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1. Summary 

The “System Execution Modeling Technologies for Large-scale Net-centric DoD Systems” 
project developed and validated system execution modeling technologies that support design 
space exploration and evaluation of US Department of Defense (DoD) software-intensive net-
centric systems before final implementation/testing and throughout subsequent system evolution. 
In particular, there were two primary objectives of this project. First, the development of system 
execution modeling tools that enable system and software engineers to automatically and 
accurately detect, diagnose, and resolve system performance and stability problems stemming 
from design decisions made in early lifecycle phases. Second, apply these tools to systematically 
and empirically measure and evaluate the impact of multi-core and distributed processing, as 
well as commercial off the shelf (COTS) componentization and Service-Oriented Architectures 
(SOAs), on software predictability and optimization in the context of representative DoD net-
centric systems 

The three year project, “System Execution Modeling Technologies for Large-scale Net-centric 
DoD Systems”, conducted research to address these challenges, and resulted in practical artifacts 
as part of a tool suite called “GUTS: GEMS (Generic Eclipse Modeling System) Utilization Test 
Suite.” The research conducted sought solutions along three dimensions: 

 Design-time solutions – where research was conducted in model-based algorithms and 
technologies; 

 Deployment-time solutions – where research was conducted on a variety of deployment-
related optimization solutions, often based on heuristics;  

 Run-time solutions – where research was conducted on runtime architectures to support 
the design-time and deployment-time decisions. 

Over the course of the project, a significant effort was focused on deployment and configuration 
(D&C) challenges for next-generation of DoD-centric systems that leverage advances in 
computing, hardware and networking technologies. The project also applied the solutions to 
D&C challenges in cloud computing, including the use of multi-core technologies and mobile 
platforms. 

This report describes the contributions accomplished during the three year project and is 
organized as follows: Section 2 provides an overview of system execution modeling; Section 3 
describes the overall architecture of GUTS; Section 4 describes how model-driven engineering 
can help automate configurations of DoD-centric systems; Section 5 extends the work to 
demonstrate the idea for product line architectures; Section 6 focuses on an important topic for 
resource-constrained DoD-centric systems for which it is important to minimize the number of 
resources used to deploy DoD systems; Section 8 describes our effort on the deployment and 
configuration of distributed real-time and embedded (DRE) systems focusing on multi-objective 
deployment optimizations, i.e., when considering more than one parameter as a constraint in 
contrast to only one as described in Sections 6 and 7. Section 9 describes how model-driven 
technologies can be used to enable auto-scaling in cloud platforms and demonstrates how the 
model-driven technology developed under this effort, SCORCH, is used in power management 
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for cloud environments; Section 10 describes our effort which continues the theme of auto-
scaling issues in cloud computing, however, with a focus on investigations on battery power 
concerns for smart phone-based cloud computing environments; Section 11 furthers the theme on 
the auto-scaling issues in cloud computing with a focus on investigations into balancing the costs 
of acquiring and releasing a machine, and their reconfigurations. An additional dimension of this 
section is on the deployment and configuration of distributed systems, which can also handle 
deployment in the Cloud; Section12 focuses on the runtime infrastructure that enables the 
deployment and validation of DoD system artifacts in the runtime execution environment. 
Predictable performance of these capabilities is important for assuring QoS properties of DoD 
systems; lastly, Section 13 gives a short summary and discusses future work.  
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2. System Execution Modeling: Motivation and Overview  

Our work in the Air Force’s Global Information Grid (GIG), Army’s Future Combat Systems 
(FCS) program, and the Navy’s DDG 1000 program activities motivate a challenging problem 
facing developers of large-scale and layered DoD software-intensive net-centric systems: how to 
discover, measure, and rectify structural, integration, and/or performance problems early in the 
system's lifecycle (e.g., in the architecture and design phases), as opposed to the final system 
integration phase, when mistakes are much harder and more costly to fix. The bulk of today’s 
software technologies and validation/verification techniques are designed to develop and analyze 
relatively small-scale systems, where the set of tasks that will run in the system and their re-
quirements for system resources are known in advance. Unfortunately, these technologies are 
poorly suited for large-scale DoD systems, where it is not possible to know the entire set of 
application tasks that will run on the system, the loads they will impose on system resources in 
response to a dynamically changing environment, or the order in which the tasks will execute. 
Moreover, even in today’s smaller-scale DoD systems where load is known in advance, there is 
often little confidence that system quality of service (QoS) requirements will be met in the de-
ployment phase due to the complexities of analyzing complex systems built atop commercial-
off-the-shelf (COTS) hardware and software components. 

Net-centric DoD systems must provide QoS support to process the right data, in the right place, 
at the right time, over a networked grid of computers. Some QoS properties required by these 
DoD systems include the low latency and jitter as expected in conventional real-time and 
embedded systems, and high throughput, scalability, and reliability as expected in conventional 
enterprise distributed systems. Achieving this combination of QoS capabilities in DoD systems is 
hard, particularly when the systems are developed using COTS hardware/software components. 

Net-centric DoD systems are developed using applications composed of hardware/software com-
ponents running on a wide range of platforms, some of which are COTS and some of which are 
proprietary legacy systems. These components are designed to provide reusable services to a 
range of application domains that are composed into domain-specific assemblies for application 
(re)use. The transition to modern methodologies, languages, and runtime platforms is intended to 
address problems of inflexibility and reinvention of core capabilities associated with prior mono-
lithic, functionally-designed, and “stove-piped” legacy applications developed with the precise 
capabilities required for a specific set of requirements and operating conditions. Modern runtime 
platforms, such as component-based and Service-Oriented Architecture (SOA)-based systems, 
for example, are designed to have a range of capabilities that enable their reuse in other contexts. 
Moreover, these systems are developed in layers, e.g., layer(s) of infrastructure middleware ser-
vices (such as naming and discovery, event and notification, security and fault tolerance) and 
layer(s) of application components that use these services in different compositions. 
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Figure 1: Complexities of Serialized Phasing in Net-centric DoD Systems 

Figure 1 shows a particularly vexing problem facing researchers and developers of large and lay-
ered net-centric DoD systems, where the inadequacies of system architectures may not be ascer-
tained until years into development. At the heart of this problem is the serialized phasing of 
layered system development, which postpones the discovery of design flaws that affect system 
QoS until late in the lifecycle, i.e., at final system integration time. A hallmark of serialized 
phasing is that application components are not created until after the completion of their un-
derlying system infrastructure components, such as naming and discovery, event and notifica-
tion, security and fault tolerance, and resource management. 

As shown in Figure 1, in net-centric DoD systems built using serialized phasing, the implementa-
tions, configurations, and deployments of infrastructure components are often not tested ade-
quately under realistic workloads until the applications are done. Moreover, both application and 
infrastructure components are hosted on the same target architecture, and therefore must be 
properly deployed and configured to achieve the desire QoS. As a result, it hard to know how 
well the system will satisfy key QoS properties due disconnects in the development of 
infrastructure and application components. Moreover, handcrafted software designs used in 
many DoD systems to address these concerns make it hard to conduct “what if” experiments on 
alternative system architectures and implementations to determine valid configurations to obtain 
performance goals for a particular workload. Making any significant changes to these types of 
handcrafted systems late in their lifecycle can be costly due to the impact on the design, im-
plementation, deployment, and (re)validation of many application and infrastructure 
software/hardware components.  

As a result of the serialized phasing problems described above, many performance characteristics 
of net-centric DoD system's components, such as invocation rates, time per invocation, and 
failover delay, are not known precisely in early phases of the lifecycle. The understanding of the 
component's timing and other properties is derived from the use of reusable software, such as 
COTS components and web services, as well as the influence of hardware based constraints (e.g. 
periodic sensor data, etc.). Although the individual component performance properties are often 
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well understood, system architectures and designs routinely fail to meet their end-to-end QoS 
goals due to unforeseen complexities of system integration. The major forces that make 
predicting end-to-end QoS hard in net-centric DoD systems include the following: 

 Emergent complexity. Although the individual QoS properties of components may be docu-
mented, unforeseen side effects of their interaction, such as prolonged execution time 
because of competition for CPU usage with other collocated components or event queuing in 
lower priority components due to high event rates in higher priority components, are not 
realized until integration time. It is therefore hard to accurately predict end-to-end QoS until 
the system is integrated and tested in its target environment. 

 Ripple effects. Individual components yield different QoS metrics for different 
hardware/software configurations. For example, a CPU bound component will perform better 
(e.g., produce a lower service time) on a faster CPU, whereas a network bound component 
will perform better with a larger bandwidth. Moreover, different versions of software may 
introduce new optimizations (e.g., improved caching or remote invocations) that can alter 
existing QoS metrics and affect end-to-end QoS. It is hard to predict precisely how end-to-
end QoS will be affected by such changes until the system is integrated and tested in its 
target environment.  

 Vast configuration spaces. System components can have multiple configurations (e.g., 
setting of attributes) that can affect its end-to-end QoS. For example, a component that 
permits configuring the number to threads handling input event will produce different 
performance metrics based on the number of threads configured. Manually trying to 
understand how different configurations of system components affect end-to-end QoS is time 
consuming, tedious, and error-prone. 

 Hardware interaction. End-to-end system performance is highly dependent on the 
deployment topology of the application. Different deployment topologies can have widely 
varying end-to-end execution times. Understanding how colocation/distribution decisions, 
the interaction of different COTS/proprietary hardware and software components, and 
network topologies will affect timing properties is infeasible for systems of realistic sizes 
containing hundreds or more components. 

As a result of the forces described above, manually deriving the most promising deployment 
configurations for net-centric DoD systems is infeasible [1]. These types of systems often have 
numerous types of constraints and huge solution spaces that make it hard to manually derive 
valid deployments. Moreover, net-centric DoD system constraints, such as network bandwidth 
and memory footprint limitations, are exponential in complexity and require constraint solvers 
(e.g., finite domain solvers) [2], [3] and numerical methods (e.g., the simplex method) [4] to find 
valid deployments. 

To address the challenges of serialized phasing in DoD systems described above, DoD re-
searchers and practitioners need a methodology and an associated suite of system execution 
modeling (SEM) tools [5] that use model-driven engineering (MDE) technologies [6], [7] to sim-
plify the following:  
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 Emulation of application component behavior in terms of computational workloads, 
resource utilizations and requirements, and network communication. This step should be 
done quickly and precisely, e.g., by using domain-specific modeling languages (DSMLs) [8–
10] that capture the behavior and workload of system components at a high-level of 
abstraction and then generate code that executes emulated components in a representative 
execution environment (ideally the actual runtime deployment platform). 

 Configuration, deployment, and execution of the emulated application components atop 
actual infrastructure components to determine their impact on QoS empirically in actual run-
time environments. These steps should also be accomplished quickly and precisely, e.g., by 
using DSMLs to specify realistic deployment configurations and synthesize metadata 
describing them. This metadata can then be processed by the same deployment and 
configuration tools as the actual system, with SEM tools providing mechanisms to record, 
consolidate, and collect QoS metrics (such as execution times and resource usage) from the 
runtime environment. 

 Process of feeding back the results to enhance system architectures and components to 
improve end-to-end QoS. This step should be accomplished by archiving the collected QoS 
metrics and providing tools that view and analyze the overall results of a deployment. SEM 
tools should also provide histories of the collected metrics to enable engineers and architects 
to understand performance and make well-informed decisions to improve QoS. 

Figure 2 shows the relationships between the steps described above. Over time as the actual 
application components mature, they can replace the emulated components providing a more 
realistic evaluation environment for DoD systems, thereby alleviating many of the current 
problems with serialized phasing in large-scale software-intensive systems.  

 

Figure 2: Evaluating the QoS of DoD Systems via System Execution Modeling Tools 

In general, SEM tools enable system engineers, software architects/developers, and quality 
assurance (QA) engineers to address the inherent complexities that arise from properties of 
production systems, including communication delay, temporal phasing, parallel execution, and 
synchronization. There are typically only a few deployment configurations that actually can 
satisfy the functional and performance requirements established in software and system 
architecture. SEM tools enable architects and engineers to discover, measure, and rectify 
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incipient integration and performance problems early in a system's lifecycle (e.g., in the analysis 
and/or design phases). These tools help shift the focus of the software integration resources to 
productive activities that evaluate and validate system performance and end-user value, rather 
than serving as the de facto system design debugging activity, as is often the case today. 
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3. Architecture of GUTS 

To achieve these objectives of SEM and to address the challenges described in Section 2, we 
have prototyped and empirically validated the GEMS (Generic Eclipse Modeling System) 
Utilization Test Suite (GUTS), which is a SEM tool suite consisting of performance modeling 
languages [11], workload emulators [12], and constraint solvers [13] that can automatically 
derive valid deployment configurations (such as mappings to various multi-core, multi-
processor, and multi-node configurations), generate end-to-end system performance tests, and 
autonomously/intelligently explore the deployment solution space of net-centric DoD system de-
signs.  

3.1 GUTS Workflow 

GUTS enables developers and testers to annotate system architectures with the expected 
workload of components and then to empirically test the end-to-end performance of the design in 
multiple deployment configurations. The key capabilities of GUTS that allow system engineers, 
software architectures, and software developers to design and test net-centric DoD systems 
include: 

 Capability 1: Synthesis of faux components that have the same interfaces and attributes as 
the real components, but there is implementation derived from the constructed performance 
models. The faux components are then instrumented in the target environment to observe and 
collect QoS metrics, such as throughput, service time, or end-to-end deadline. This capability 
will allow developers and testers to conduct integration tests during early stages of 
development using emulated components to locate and rectify design flaws that may be too 
costly to fix later in the development lifecycle. 

 Capability 2. Continuous system integration is achieved by allowing real components to 
replace the faux components as they are completed. This capability will allow developers to 
continuously test their system in the target environment and produce more realistic QoS 
metrics. Moreover, it will allow developers to test their components under realistic and 
hypothetical workloads to better understand how the system’s QoS is affected. 

 Capability 3. Visual analysis of QoS metrics collected while the system is executed in its 
target environment. This capability will help to alleviate the time and effort of presenting the 
collected metrics in a clear and easy to understand format. 

 Capability 4. Constraint solvers that can automatically satisfy the complex deployment 
constraints, such as resource constraints, and generate valid configurations. Moreover, the 
deployment solution space can be searched using heuristics allowing the tool to look for 
deployments considering high in quality. This capability allows the tool to systematically 
iterate through deployments and test a system design in the most promising deployment 
configurations. 

 Capability 5. An autonomous testing mode in which the tool repeatedly solves for valid 
deployment plans, executes end-to-end performance tests on it, and then uses the 
performance results to refine the deployment topology. If a deployment topology is found to 
satisfy the end-to-end goals, the iterative performance testing stops. If not, the system 
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continues refining the deployment plan and running tests until it finds that it cannot improve 
upon its current solution. 

By allowing developers to evaluate a system design empirically in multiple deployment 
configurations using both faux and real components, GUTS allows developers and testers to 
begin conducting integration tests during the early stages of development. Applying GUTS 
throughout the system lifecycle will help pinpoint and resolve design flaws earlier in the 
development lifecycle before they become too hard and costly to locate and rectify. More 
importantly, GUTS will assist system developers and testers in searching the deployment and 
configuration space for net-centric systems to locate valid developments and configurations that 
meet their desired QoS requirements. 

 

Figure 3: Workflow of Applying GUTS to Evaluate Net-centric DoD System Performance 

Figure 3 shows an example workflow of applying GUTS to evaluate the performance of a repre-
sentative DoD system, such as an information dissemination application running in the tactical 
GIG. The workflow in Figure 3 consists of the following steps: 

1. Quality assurance (QA) engineers use the GUTS SEM tool to work with system engineers 
and software architects early in the system lifecycle to compose scenarios that specify the 
structure of the system (e.g., the component and their interconnections) and exercise critical 
system paths. 

2. QoS engineers use GUTS to work with QA engineers to create representative scenarios that 
associate performance properties with (a) individual components, such as a component’s 
CPU utilization or (b) the system as a whole, such as the deadline of a critical path through 
the system. 

3. The information captured in the first two steps is then synthesized into executable code and 
configuration metadata, then QA engineers use GUTS to configure the workload emulators 
to run experiments, generate deployment plans, and measure performance along critical paths 
on the target architecture. 
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4. QA engineers work together with system engineers and software architects to explore design 
alternatives from multiple computational and valuation perspectives to (1) analyze results to 
verify if deployment plan and configurations meet performance requirements and (2) 
quantify the costs of certain design choices on end-to-end system performance. The results 
can be fed back to the software architects and developers to address any problems that were 
identified using GUTS. 

In the context of net-centric DoD systems, our proposed GUTS SEM tool will help systems engi-
neers and software architects conduct “what if” experiments to discover, measure, and rectify 
performance problems early in the lifecycle (e.g., in the architecture and design phases), as 
opposed to waiting until the integration phase, when mistakes are much harder and more costly 
to fix.  

3.2 GUTS Architecture 

As shown in Steps 1-4 in the workflow in Figure 3, various roles coordinate on the design and 
evaluation of a net-centric system and produce multiple domain-specific models. For example, in 
Step 1, developers produce architectural models of the system and in Step 4 developers leverage 
another model to explore the solution space of the design. A key capability for coordinating the 
development of the set of models from the workflow in Figure 3 and achieving the autonomous 
testing capability described in Section 3.1 is a method for maintaining the consistency of 
multiple independent models.  

For example, when new simulation results are produced from experiments, the results may 
invalidate the currently modeled assumptions about the system’s resource consumption behavior. 
In this case, the autonomous testing facility must update both the behavioral specification of the 
system and the deployment models. Updating the deployment model will result in the constraint 
solver producing a modified deployment that must then be fed into the architectural model of the 
system to produce new deployment descriptors. As each model changes, multiple other models 
must be kept in sync. 

To manage the complexity of leveraging multiple models of a system, we have developed a 
prototype of GUTS that uses the model event bus shown in Figure 4 to integrate multiple 
domain-specific modeling languages (DSMLs) that capture different concerns, such as system 
behavior, workload, and deployment and configuration.  
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Figure 4: The GUTS Model Event Bus 

In Step 1 of Figure 4, developers specify the architecture of the system through structural 
models. Developers also produce a model of the expected behavior of the individual components 
in the system in Step 1. The behavioral specification is used to help synthesize faux components 
for experiments as outlined in Capability 1 of Section 3.1. The updates to the system behavior 
cause an event to be broadcast to the model event bus in Step 2. The model event bus uses an 
autonomous service to determine which models are potentially affected by the event and to 
notify the relevant models of the change. 

The new behavioral data has two ramifications on the Scatter component. First, a new 
deployment plan must be deduced (Capability 4 in Section 3.1) that properly accounts for the 
updated information on each component’s resource consumption. Second, new faux components 
must be synthesized to model the modified behavior (Capability 2 in Section 3.1). Once these 
updates to the deployment model and faux components are complete, new experiments must be 
run to understand the implications of the changes on the system as a whole. The output of these 
experiments is returned to the data (Capability 3 in Section 3.1). After every iteration developers 
may replace one or more faux components with actual implementations allowing the continuous 
integrating and testing of the system as a whole (Capability 2 in Section 3.1). 

The output of the experiments may in turn show that certain key end-to-end deadlines are not be-
ing met and that the system’s architecture must be modified. The modification of the system’s 
architecture will in turn create another ripple of changes throughout the system that must be 
integrated into the models, emulated, and evaluated. The model event bus is a key enabler of the 
continuous autonomous integration and testing in GUTS (Capability 5 of Section 3.1).  

As shown in Figure 4, each DSML can be viewed as a component in GUTS. DSMLs we used for 
the GUTS prototype include the following: 
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The Component Workload Emulator (CoWorkEr) Utilization Test Suite (CUTS) [12], which is a 
MDE tool that allows developers to rapidly create emulations of component-based applications 
and understand is performance in the target domain well before system integration The CUTS 
component encompasses three different DSMLs, including the Platform Independent Component 
Modeling Language (PICML) [14], [15], Component Behavior Modeling Language (CBML) 
[16], Workload Modeling Language (WML) [16]. PICML is used to capture the structural aspect 
of component-based applications, such as provided and required interfaces, event sources and 
sinks, and attributes. CBML is designed to capture the behavior of reactive systems, such as 
component-based systems. WML is used to associate workload parameters with the actions in 
CBML to create operations that can be emulated on the target architecture (e.g., a representative 
testbed used for system integration testing).  

 

Figure 5: The CUTS DSML and Related Tools and DSMLs 

Figure 5 shows how CUTS models can be used to specify the behavior and workload of 
individual components so that the system can be emulated on the target architecture (i.e., a 
representative testbed used for system integration) during the early stages of development (i.e., 
before system integration). As illustrated in Figure 5, CUTS models is composed of component 
software architecture models captured using PICML and behavior models for each component 
captured using CBML and WML. Initially, a developer bootstraps the CUTS models by defining 
the behavior and workload parameters (e.g., how much memory to consume) and estimating 
resource usage of each component in the system. These initial estimates are then replaced after 
the first emulation of the system and the CUTS component receives resource usage values as 
feedback via the CUTS runtime framework. 

Scatter [13], which is an automated deployment planning tool based on constraint logic program-
ming techniques. Scatter takes as input a model of a set of components, their functional 
requirements (e.g. OS type, required libraries, and collocated components), their resource con-
sumption values, and a set of deployment targets (e.g. embedded microprocessors.) and produces 
a valid assignment of components to nodes (a deployment plan). Moreover, if multiple valid 
deployment plans exist, Scatter can attempt to find an optimized deployment plan with a user 
provided a cost function.  

Figure 6 shows Scatter and its related tools, which include the Scatter solver and Scatter’s 
interface to the CUTS component emulation environment. First, the deployment planner 
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provides Scatter the list of available hardware resources for running the components specified in 
the software architecture. Second, Scatter invokes its constraint solver-based deployment planner 
to derive a valid deployment of components to nodes. Scatter then invokes the CUTS emulation 
environment to test the newly derived deployment plan and producing new performance data. 
The performance data is then fed back either directly to developers (to modify the system archi-
tecture) or to Scatter to attempt to improve the deployment plan. 

 

Figure 6: Scatter and Related Tools 

The Scatter component receives the list of components as input, their modeled resource 
consumptions, and the available hardware resources. The Scatter solver uses this information to 
produce a new deployment plan designed to improve the end-to-end performance of the system’s 
key critical paths. The new deployment plan produced by Scatter is used to create a new model 
of the system, such as a PICML deployment and configuration based on new resource 
consumption estimates, in CUTS. CUTS then emulates the new model and produces updated 
end-to-end execution times and resource consumption values. The new emulation results are 
returned as feedback to the original CUTS behavior models to refine the understanding of the 
system’s execution properties. 

 A GUTS-based model can receive (1) human-based input, such as a developer pointing and 
clicking to create modeling elements, and (2) machine-based input, such as the output of 
simulation results. For example, the CUTS behavior model can receive human-input in the form 
of a human manually modeling the behavior specification of individual components, and 
machine-input in the form of resource consumption values measured while emulating the system 
on the target architecture.  

Viewing each model as a component with input and output ports allows the seamless integration 
of new DSMLs, such as a DSML for producing queuing models from emulation results 
measured by CUTS, into GUTS to enhance multi-model collaboration. As shown in Figure 4, the 
multiple components (i.e., DSMLs) used by GUTS are integrated via a model event bus. This 
event bus receives notifications when the output of a model changes, such as when new 
simulation results are generated. When a new event arrives, a lookup table is used to determine 
which subscribers are registered for the event. Guards can also be associated with a subscriber to 
filter the events sent. 
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3.3 GUTS in the Context of the AFRL SPRUCE Program 

We have conducted several experiments on our GUTS SEM tools described in Section 3.2 using 
the Systems and Software PRoducibility Collaboration and Experimentation Environment 
(SPRUCE) testbed developed as part of the OSD sponsored, AFRL executed, Software and 
Systems Test Track (SSTT) program. The objective of SPRUCE is to provide a distributed, open 
collaborative R&D environment were software-intensive systems productivity initiative (SISPI) 
researchers can demonstrate, evaluate, and document the ability of their tools, methods, 
techniques, and run-time technologies to yield affordable and predictable production of software-
intensive systems. SPRUCE provides the following four key capabilities to achieve this 
objective: 

 Ability to define and collaborate around challenge problems distilled from 
representative DoD acquisition programs. 

 Ability to define and collaborate around promising candidate solutions to said 
challenge problems. 

 Ability to define, conduct and collaborate around realistic experiments related to 
challenge problems and candidate solutions. 

 Ability to shepherd technology transition across the software producibility spectrum 
and across operational domains. 

To provide these capabilities, SPRUCE features a collaboration environment for bringing pro-
gram engineers and SISPI researchers together to develop, experiment, and transition 
technologies. Figure 7 shows how the GUTS SEM tools relate to the broader SPRUCE 
technology identification, creation, and transition process. The benefits of conducting experi-
ments on our SEM tools within the SPRUCE environment include (1) evaluating the efficacy of 
GUTS in a representative “at-scale” environment, (2) serving as an early adopter exemplar to 
encourage other researchers to leverage SPRUCE to showcase their research activities, and (3) 
providing the opportunity to collaborate more effectively with other researchers, DoD system 
integrators, and COTS technology suppliers interested in the work. 

We have conducted evaluations and experiments throughout the effort. Initial experiments 
conducted early in the project evaluated the candidate technology elements. The experiments 
were defined in collaboration with SPRUCE collaborators and challenge problems specified on 
the SPRUCE portal. Subsequently the experiments were executed to collect and evaluate (1) 
functional and QoS attributes provided by the candidate technologies compared to net-centric 
system requirements (such as the tactical), (2) relative performance of a candidate technology 
compared to other candidate technologies, (3) coverage of use cases by the candidate technology, 
and (4) richness of application programmatic interfaces for the candidate technology. The results 
of these experiments were used to evaluate individual technologies, select among candidate 
technologies, design integration strategies, and identify needed enhancements to the candidate 
technologies. 
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Figure 7: GUTS in the Context of AFRL SPRUCE 

We have set up the necessary experimentation infrastructure to support the experiments at one or 
more of several testbeds available to us under this project. Our testbed shown in Figure 8 is the 
ISISlab at Vanderbilt University (www.dre.vanderbilt.edu/ISISlab), which is a dedicated cluster 
of over 100 high-end x86 CPUs capable of running multiple operating systems, such as many 
versions of Linux, Windows, Solaris, Mac OSX, and BSD UNIX. We have recently enhanced 
this cluster with control software from Emulab, an NFS-sponsored testbed at the University of 
Utah. The right hand side of Figure 8 shows the hardware and networking elements in ISISlab, 
which are also part of the Spirals 0 and 1 Experiment Infrastructure for the SPRUCE project. 

 

Figure 8: Testbed Environment for GUTS 
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4. Automating Configurations using Model-driven Engineering 

This section describes the role of model driven engineering in automating configurations for 
DoD-centric systems. 

4.1 Introduction 

Distributed real-time embedded (DRE) systems (such as avionics systems, satellite imaging 
systems, smart cars, and intelligent transportation systems) are subject to stringent requirements 
and constraints. For example, timing constraints require that tasks be completed by real-time 
deadlines. Likewise, rigorous quality of service (QoS) demands (such as dependability and 
security) require a system to recover and remain active in the face of multiple failures [17]. In 
addition, domain-specific constraints (such as the need for power management in embedded 
systems) must be satisfied. To cope with these complex issues, applications for DRE systems 
have traditionally been built from scratch using specialized, project-specific software 
components that are tightly coupled with specialized hardware components [18].  

To reduce development cycle-time and cost, the new generation of DRE systems are increasingly 
being developed by configuring applications from multiple layers of commercial-off-the-shelf 
(COTS) hardware, operating systems, middleware components, and mission level software 
components [19]. These types of DRE systems require the integration of 100’s-1,000’s of 
software components that provide distinct functionality (such as I/O, data manipulation, and data 
transfer) that must work in concert with other software to accomplish mission-critical tasks (such 
as self-stabilization, error notification, and power management). The software configuration of a 
DRE system directly impacts its performance, cost, and quality. 

As COTS-based DRE systems increase in size and complexity the traditional design techniques 
based on complete in-house proprietary construction are not sufficient. Moreover, the traditional 
techniques cannot configure COTS-based DRE systems that can simultaneously address the 
stringent requirements and constraints outlined above [20]. The objective of DRE system 
configuration is to determine exactly what combination of hardware/software components will 
provide the requisite QoS. In addition, the combined purchase cost of the components cannot 
exceed a predefined amount, referred to as the project budget. 

An overall DRE system configuration can be split into a software configuration and a hardware 
configuration. A valid software configuration must meet all real-time constraints (such as 
minimum latency and maximum throughput), provide required functionality, and also satisfy all 
domain-specific design constraints while not exceeding the available budget for purchasing 
software components. Similarly, the hardware configuration must meet all constraints without 
exceeding the available hardware component budget.  

It is likely that for each portion of desired software functionality, there are multiple COTS 
components that can perform the desired function. Each option differs in QoS provided, the 
amounts/types of computational resources required, and purchase cost. The complexity 
associated with DRE systems composed of 100’s-1,000’s of components makes it hard to find 
configurations that meet complex QoS constraints. Creating and maintaining error-free 

Approved for Public Release; Distribution Unlimited 
16



configurations is also hard due to the large number of complex configuration rules and QoS 
requirements. 

Solution approach  Model-driven automated configuration techniques. This section 
presents techniques and tools that leverage the Model Driven Architecture (MDA) paradigm to 
determine valid DRE system configurations that fit budget limits. To help address the difficulty 
of DRE system configuration, DRE system designers can use MDA to visualize configuration 
options/rules, verify configuration validity, and compare potential DRE system configurations.  

MDA is a design approach for specifying system configuration constraints with platform-
independent models (PIMs). Each PIM can be used as a meta-modeling for constructing 
platform-specific models (PSMs) [21]. These PSMs can be analyzed to determine DRE system 
configurations that meet budget constraints. After a PSM is determined for implementation, it 
can be used as a blue print for constructing an actual DRE system implementation that meets all 
design constraints specified within the PIM [7]. As DRE system requirements evolve and 
additional constraints are introduced, the PIM can be modified and new PSMs constructed. 
Systems that are constructed using these PSMs can reflect additional constraints and require-
ments more readily than those developed manually. 

We conducted a survey of Meta-modeling techniques for creating DSMLs that can be applied to 
DRE system configuration and demonstrated the creation of a DSML for modeling hard-
ware/software component options, resource constraints, and budgetary constraints. We also show 
how to utilize modeling environments to create models that adhere to the DSML for DRE system 
configuration. In addition, we demonstrate an interpreter that can examine models of 
hardware/software DRE system configuration options, generate code, which can ultimately be 
used to produce output models that provide valid, high-quality large-scale DRE system 
configurations. 

4.2 Large-scale DRE System Configuration Challenges.  

This section presents the criteria for valid DRE system configurations, describes the challenges 
that make determining configurations hard, and provides a survey of current techniques and 
methodologies for DRE system configuration. Software and hardware components often have 
complex interdependencies on the consumption and production of resources (such as processor 
utilization, memory usage, and power consumption). An overall DRE system configuration 
consists of a valid hardware configuration and valid software configuration in which the 
computational resource needs of the software configuration are provided by the computational 
resources produced by the hardware configuration. If the resource requirements of the software 
configuration exceed the resource production of the hardware configuration, a DRE system will 
not function correctly and is considered invalid.  

Consider configuration options for a satellite imaging system case study we used. This DRE 
system consists of two software components: an image processing algorithm and software that 
defines image resolution capabilities. There are multiple options for each software component, 
each of which provides a different level of service. For example, there are three options for the 
image resolution component. The high-resolution option offers the highest level of service, but 
also requires dramatically more RAM and CPU to function than the medium or low-resolution 
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options. If the resource amounts required by the high-resolution option are not supplied, then the 
component cannot function, preventing the system, as a whole, from functioning correctly. If 
RAM or CPU resources are scarce, the medium or low-resolution option should be chosen. 
However an additional design constraint may require at least medium image resolution. 
Assuming sufficient resources for only the medium and low-resolution options, the only option 
that satisfies all constraints is the medium image resolution option.  

Further, the inclusion of a component in a configuration may prohibit or require the use of one or 
more components. Certain software components may have compatibility problems with other 
components. For example, each of the image resolution components may be a product of 
separate vendors. As a result, the high and medium-resolution component may be compatible 
with any image processing component while the low-resolution component may only be 
compatible with image processing components made by the same vendor. These compatibility 
issues add another level of difficulty to determining valid DRE system configurations. 

Large-scale DRE systems may consist of many software and hardware components with multiple 
options for each component, resulting in an exponential number of potential configurations. Due 
to the multiple design, real-time, and resource constraints discussed earlier, it is simple to see 
that arbitrarily selecting components for a configuration is ineffective. That is, the huge mag-
nitude of the solution space prohibits the use of manual techniques. Automated techniques, such 
as Constrained Linear Programming (CLP), use Constraint Satisfaction Problems (CSPs) to 
represent system configuration problems [22][23]. These techniques are capable of determining 
optimal solutions for small-scale system configurations but require the examination of all 
potential system configurations. Techniques utilizing CSPs are ideal, however, for system 
configuration problems involving a small number of components as they can determine an 
optimal configuration (should one exist) in a short amount of time. 

The exhaustive nature of conventional CSP-based techniques, however, renders them ineffective 
for large-scale DRE system configuration. Without tools to aid in large-scale DRE system 
configuration, it is a struggle for designers to determine any valid large-scale system 
configuration. Even if a valid configuration is determined, other valid system configurations may 
exist with vastly superior performance and dramatically less financial cost. Further, the constant 
development of additional technologies, legacy technologies becoming unavailable, and domain 
specific and design objectives constantly in flux, valid configurations can quickly become 
invalid, requiring that new configurations be discovered rapidly. It is thus imperative that 
advanced design techniques are developed to identify and validate large-scale DRE system 
configurations.  

The following is a summary of key challenges that make it particularly hard to configure DRE 
systems using COTS components: 

 Choosing between multiple levels of service. Software components provide differing levels 
of service. For example, a designer may have to choose between three different software 
components that differ in speed and throughput. In some cases, a specific level of service 
may be required, prohibiting the use of certain components. 
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 Complex resource interdependencies. Hardware components provide the computational 
resources that software components require to function. If the hardware does not provide an 
adequate amount of each computational resource, some software components cannot 
function. An overabundance of resources indicates that some hardware components have 
been purchased unnecessarily, wasting funds that could have been spent to buy superior 
software components or set aside for future projects. 

 Satisfying differing resource requirements. Each software component requires 
computational resources to function. These resource requirements differ between 
components. Often, components offering higher levels of service require larger amounts of 
resources and/or cost more to purchase. Designers must therefore consider the additional 
resulting resource requirements when determining if a component can be included in a 
system configuration. 

 Meeting budgetary constraints. Each component has an associated purchase cost. The 
combined purchase cost of the components included in the configuration must not exceed the 
project budget. It is therefore possible for the inclusion of a component to invalidate the 
configuration if its additional purchase cost exceeds the project budget regardless of 
computational resources existing to support the component.  

 Choosing from many components. Large-scale DRE systems can require hundreds to 
thousands of components to function. For each component there may be many options 
available for inclusion in the final system configuration. Due to the complex resource 
interdependencies, budgetary constraints, and domain- specific design constraints it is hard to 
determine if including a single component will invalidate the system configuration. Even 
automated techniques require years or more to examine all possible system configurations for 
such problems.  

4.3 Reviewing Literature on System Configuration Optimization.  

This section surveys various DRE system configuration problems and model analysis techniques, 
including hardware/software co-configuration problems and heuristic algorithms for resource-
constrained configuration. We describe several different types of DRE system configuration 
problems. We also examine several techniques that have been applied to aid in the determination 
of optimal or near-optimal DRE system configurations, such as Constrained Linear Programming 
and Constraint Satisfaction Problems. Finally, we will describe how MDA can be used to 
mitigate many of the problems associated with these techniques. 

Feature models are visual diagrams that have been used to model Software Product Lines (SPLs) 
as well as system configuration problems. Czarnecki et al. use feature models to describe the 
configuration options of systems [24]. Feature models are represented using tree structures with 
lines, representing functional constraints that are connected to the various candidates for 
inclusion in an SPL, known as features. The feature model uses functional constraints to 
illustrate the effects that selecting one or more features have on the validity of selecting other 
features. As a result, it is obvious if the inclusion of a feature will result in an invalid system 
configuration. Czarnecki also presents staged-configuration, an incremental technique for 
manually determining valid feature selections. This work, however, cannot be directly applied to 
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the configuration of large-scale DRE system configuration because it does not consider resource 
constraints. Also, since staged-configuration is not automated, it would take a prohibitive amount 
of time to determine valid system configurations. 

Benavides et al. introduce the extended feature model, an augmented feature model with the 
ability to more articulately define features and provide additional constraints [23]. Additional 
descriptive information, called attributes, can be added to define one or more parameters of each 
feature. For example, the resource consumption and cost of a feature could be defined by adding 
attributes for each feature. Each of these attributes would list the type of resource and the amount 
consumed or provided. Additional constraints can be defined by adding extra-functional features. 
Extra-functional features define rules that dictate the validity of sets of attributes. For example, 
an extra-functional feature may require that the total cost of a set of features describing 
components is less than that of a feature that defines the budget. Therefore any valid feature 
selection would satisfy the constraint that the collective cost of the components is less than the 
total project budget. 

Benavides et al. also provide a methodology for mapping extended feature models onto 
Constraint Satisfaction Problems (CSPs). A CSP is a set of Boolean variables with multiple 
constraints that define the values that the variables can take. Attributes and extra-functional 
features are maintained in the mapping. As a result, solutions that satisfy all extra-functional 
features and basic functional constraints can be found automatically with the use of commercial 
CSP solvers. Further, these solvers can be configured to optimize one or more attributes, such as 
the minimization of cost. These techniques, however, require the examination of all potential 
solutions, resulting in a system configuration that is not only valid, but also optimal.  

While extended feature models and the techniques for determining valid configurations by 
converting them to CSPs does account for resource and budget constraints, the process is not 
appropriate for large-scale DRE system configuration problems. The exhaustive nature of CSP 
solvers often requires that all potential solutions to a problem be examined. Since the number of 
potential system configurations is exponential in regards to the number of potential components, 
the solution space is far too vast for the use of exhaustive techniques as they would require a 
prohibitive amount of time to determine a solution. 

To circumvent the unrealistic time requirements of exhaustive search algorithms, previously we 
have examined approximation techniques for determining valid feature selections that satisfy 
multiple resource constraints using Filtered Cartesian Flattening (FCF) [25]. Approximation 
techniques do not require the examination of all potential configurations, allowing solutions to be 
determined with much greater speed. While the solutions are not guaranteed to be optimal, they 
are often found to be optimal or extremely near optimal.  

FCF converts extended feature models into Multiple-choice Multi-dimensional Knapsack 
Problems (MMKP). MMKP problems, as described by Akbar et al are an extension of the 
Knapsack Problem (KP), Multiple-Choice Knapsack Problem (MCKP) and Multi-Dimensional 
Knapsack Problem (MDKP) [26]. Akbar et al. provide multiple heuristic algorithms, such as I-
HEU and M-HEU for rapidly determining near optimal solutions to MMKP problems.  
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With FCF, approximation occurs in two separate steps. First, all potential configurations are not 
represented in the MMKP problems. For example, if there is an exclusive-or relationship 
between multiple features, then only a subset of the potentially valid relationships may be 
included in the MMKP problem. This pruning technique is instrumental in restricting problem 
size so that solving techniques can be used rapidly. Second, heuristic algorithms, such as M-
HEU can be used to determine a near-optimal system configuration. M-HEU is a heuristic 
algorithm that does not examine all potential solutions to an MMKP problem, resulting in faster 
solve time, thus allowing the examination of considerably larger problems. Due to these two 
approximation steps, FCF can be used for problems of considerably larger size compared to 
methods utilizing CSPs.  Figure 9 shows the distribution of the number of problems solved for a 
model with 10,000 features. 

While FCF is capable of determining valid large scale DRE system configurations, it still makes 
many assumptions that may not be readily known by system designers. For example, FCF 
requires that the project budget for purchasing hardware and the project budget for purchasing 
software components be known ahead of time. The best way to split the project budget between 
hardware and software purchases is dictated by the configuration problem being solved. For 
example, if all of the hardware components are cheap and provide a huge amount of resources 
while the software components are expensive, it would not make sense to devote half of the 
project budget to hardware and half to software. A better system configuration may result from 
devoting 1% of the budget to hardware and 99% to software. 

 
Figure 9: FCF Optimality with 10,000 Features 

The Allocation baSed Configuration ExploratioN Technique (ASCENT) was developed and is 
capable of determining valid system configurations while also providing DRE system designers 
with favorable ways to divide the project budget [27]. ASCENT takes an MMKP hardware 
problem, MMKP software problem and a project budget amount as input. Due to the speed and 
performance provided by the M-HEU algorithm, ASCENT can examine many different budget 
allocations for the same configuration problem. ASCENT has been used for configuration 
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problems with 1000’s of features and is over 98% optimal for problems of this magnitude, 
making it an ideal technique for large-scale DRE system configuration. 

4.4 MDE-based Configuration Modeling Methods and Tools.  

This section describes meta-modeling and modeling techniques in the domain of DRE system 
configuration. Due to the complexities accompanying system configuration with COTS 
components (such as differing levels of service, complex resource interdependencies, differing 
resource requirements, budgetary constraints, and a multitude of component candidates), 
designers using manual techniques often unknowingly invalidate system configurations. MDA 
tools allow designers to manipulate problem entities and compare potential solutions in an 
environment that ensures various design rules are enforced, thereby allowing designers to focus 
on other problem dimensions, such as performance optimization or minimization of 
computational resources.  

To create an MDA tool for determining DRE system configurations, we must first define several 
rules for DRE system configuration. First, we need to define the entities that are involved in 
DRE system configuration. For example, at the most basic level, DRE system configuration 
consists of hardware and software components. Second, we must define how these entities 
interact. For example, we can specify that hardware components provide computational 
resources and that software components consume computational resources. Finally, we need a 
way to define the constraints that must be maintained as these entities interact for a system 
configuration to be valid. For example, we may specify that a software component that interacts 
with a hardware component must be provided with sufficient computational resources to function 
by the hardware component.  

This collection of rules governing the entities, interactions and constraints of the problem we are 
examining is defined as a Domain Specific Modeling Language, or DSML. Once we have 
defined a DSML, we can create model instances that enforce the rules and constraints defined by 
the DSML. Most nontrivial problems, however, require multiple entities, various types of 
interactions, and complex constraints. As a result, defining the DSML can be a confusing, 
arduous task. Fortunately, meta-modeling tools exist that provide a clear and simple procedure 
for creating Platform Independent Models (PIMs) or meta-modelings. These PIMs can then be 
used by modeling tools to define the DSML for created model instances, or Platform Specific 
Models (PSMs).  

Tools for generating PIMs provide several advantages over defining DSMLs manually. First, 
meta-modeling DSMLs for constructing a PIM can prevent defining rules that are contradictions 
or inappropriate. Also, by using a meta-modeling tool for defining PIMs the DSML can easily be 
augmented or altered should the domain or other problem parameters change. Finally, the same 
complexities that are inherent to creating PSMs are also present in creating PIMs and often 
amplified by the additional abstraction required for creating PIMs. Meta-modeling tools use an 
existing DSML that defines the rules for creating meta-models, thereby enforcing the complex 
constraints and facilitating quick, accurate meta-model design.  

Many tools exist for the definition of PIMs and creation of PSMs. Due to space constraints, we 
only examine the Generic Eclipse Modeling System (GEMS) [28] and the Generic Modeling 
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Environment (GME) [10]. GEMS is a meta-modeling tool that leverages the Eclipse Modeling 
Framework (EMF) and the Graphical Modeling Framework (GMF). GEMS uses a drag and drop 
visual interface that allows users to define meta-models without writing a single piece of code. 
The DSML for defining the meta-model prevents the user from making many simple mistakes, 
allowing the user to quickly construct a modeling tool for a specific domain. After the meta-
model is constructed, the meta-model is analyzed by an interpreter. Code generators create all the 
necessary Java source files for defining the DSML for a domain specific modeling tool adhering 
to the rules and constraints defined by the meta-model.  

GEMS, compared to GME, is simplified so that meta-models can be created rapidly. Figure 10 
shows the DSML for describing a deployment scenario. The entities that interact within the 
meta-model are called classes. Each GEMS meta-model has a root class that serves as a 
container for the rest of the meta-model elements. In this case the meta-model is for a 
deployment plan, so the root container is called “DeploymentPlan”. All classes that are a child of 
this root class are entities that are relevant to creating a valid deployment plan. “Node” and 
“Component” for example are children of the “DeplyomentPlan”, as defined by the arrows 
leading from “Node” and “Component” to the root class. Therefore, the final modeling tool for 
creating deployment plans will permit the inclusion of one or more hardware “Nodes’ and 
software “Components”. 

Now that we have all of the necessary entities for the modeling tool we must define the rules that 
govern the interactions of these entities. For example, we must define the relationship between 
hardware nodes and software components in which the software components consume resources 
of the hardware nodes. Before we can do this, however, we must define an attribute that 
specifies the resource production values of the hardware nodes and the resource consumption 
values of the software nodes. Once we have defined an attribute and associated it with a class, 
we can include the attribute in the interaction definition.  

 
Figure 10: Meta-modeling Defined using GEMS 
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An interaction is defined by adding a connection to the meta-modeling. The connection specifies 
the rules for connecting entities in the resulting PSM. For example, Figure 10 defines a 
“deployed on” connection between software components and hardware nodes. Within the 
connection, we can define additional constraints that must be satisfied for two classes to be 
connected. For example, for a software component to be connected to a hardware node with a 
“deployed on” connection the resource consumption attribute of the software component could 
not exceed the attribute of the hardware node that defines the amount of resource production.  

Once the meta-modeling is completed, it is interpreted to create the source code for a modeling 
tool to enforce it. An example of the tool for modeling deployment plans is shown in Figure 11. 
In this figure, software components are connected to the hardware nodes on which they are 
deployed. If the user attempts to connect a software component to a hardware node that does not 
have sufficient resources for connecting the software component, the tool will not allow a 
connection to be made. A user can quickly create new deployment plans by dragging additional 
software components and hardware nodes from the toolbar. The user can then examine potential 
deployments simply and determine their validity by simply attempting to connect software 
components to hardware. Since the resource constraints and domain constraints are defined in the 
meta-modeling and enforced by the modeling tool, the user can create and validate deployments 
without having to be cognizant of these complex constraints, resulting in easier, faster 
deployment planning. 

 
Figure 11: GEMS Deployment Plan Model 

The Generic Modeling Environment (GME) [10] is another modeling toolkit for creating domain 
specific models. The two principal components of GME, GMeta and GModel, work together to 
provide this functionality. GMeta is a graphical tool for constructing meta-modelings. GMeta 
divides meta-modeling design into 4 separate sub-meta-modelings: the Class Diagram, 
Visualization, Constraints, and Attributes. The Class Diagram defines the entities within the 
model, known as models, atoms, and first class objects, as well as their structural hierarchy and 
the connections that can be made between them. The Visualization sub-meta-modeling defines 
different aspects, or filters, for viewing only certain entities within the model. For example, if 
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one was defining a meta-modeling for a finite state machine, an aspect could be defined in the 
Visualization sub-meta-modeling that would only display accepting states in the finite state 
machine model. The Constraints sub-meta-modeling allows the application of Object Constraint 
Language (OCL) constraints to meta-modeling entities. Continuing with the finite state machine 
meta-modeling example, one might add a constraint that only a single starting state may exist in 
the model. To do this, the user would add a constraint in the Constraints sub-meta-modeling, add 
the appropriate OCL code to define the constraint, and then connect it to the entity to which it 
applies. Finally, the Attributes sub-meta-modeling allows additional data, known as attributes, to 
be defined and associated with other meta-modeling entities defined in the Class Diagram.  

Once the meta-modeling has been constructed using GMeta, the interpreter must be run to 
convert the meta-modeling into a GME paradigm. This paradigm can then be loaded with GME 
and used to created models that adhered to the DSML defined by the meta-modeling. The user 
may then created models with the assurance that the design rules and domain specific constraints 
defined within the meta-modeling will be satisfied. Since GModel takes care of enforcing all 
constraints, the designer can use the graphical user interface to rapidly create and experiment 
with various models without the overhead of monitoring for constraint violations. If at any point 
the domain or design constraints of the model change, the meta-modeling can be reloaded, 
altered and interpreted again to change the GME paradigm appropriately. As a result, designers 
can easily examine scenarios in which constraints differ, giving a broader overview of the 
domain design space.  

4.5 Case Study  

In Section 4.2 we discussed the challenges of DRE system configuration. For problems of non-
trivial size, these complexities proved to be too difficult to overcome without the use of 
programmatic techniques. In Section 4.3 we introduced several automated techniques for 
determining valid DRE system configurations including the Allocation baSed Configuration 
EsploratioN Technique (ASCENT). ASCENT is also capable of providing additional design 
space information, such as how to allocate a project budget, which is extremely valuable to 
designers. 

ASCENT was implemented purely programmatically in Java. Due to this, the entire 
configuration problem, including external resources, constraints, software components and 
hardware components along with their multiple unique resource requirements had to be defined 
through multiple lines of complex code. As a result, the preparation time for a single 
configuration problem takes a considerably long amount of time. In addition, designers cannot 
easily manipulate many of the problem parameters to examine “what if” scenarios. The use of 
Model Driven Architectures, however, can circumvent these shortcomings of a purely 
programmatic interface. We utilized GME to construct a meta-modeling for describing a DSML 
for DRE system configuration and used this paradigm to experiment with the ASCENT 
Modeling Platform (AMP). Several benefits were observed as a result of using GME to construct 
an MDE for DRE system configuration as follows: 

 Visual representation – Simply having a visual representation of the hardware and software 
components makes it significantly easier to grasp the problem, especially to users with 
limited experience in DRE system configuration. 
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 Ease of configuration – In addition to visually representing the problem, being able to 
quickly and easily change configuration details (budget, constraints, components, resource 
requirements etc.) makes the analysis much more powerful. 

 Generational analysis – The model may be fed a previous solution as input, enabling 
designers to examine possible upgrade paths for the next budget cycle. These upgrade paths 
can be tracked for multiple generations, meaning that the analysis can determine the best 
long-term solutions. This is a capability that was not previously available with ASCENT and 
would have been considerably more difficult to implement without the use of GME. 

 Easily Extensible- It is simple to add additional models and constraints to the existing meta-
modeling. As DRE system configuration domain specific constraints are introduced, the 
existing meta-modeling can be altered to enforce these additional constraints in subsequent 
models. Since most DRE system configuration problems only slightly differ, existing meta-
modelings can be reused to rapidly construct appropriate DSMLs.  

 Simplifies Problem Creation – Allows user to drag and drop to create the problem instance 
instead of writing the 300+ required lines of complex Java code. The advantages of using a 
simple graphical user interface are two-fold: First, designers do not have to take the time to 
type such a large amount of code. Second, while typing this large amount of code designers 
will likely make mistakes. While many of these mistakes may be caught by the compiler, it is 
also likely that domain specific constraints will be inadvertently violated. Since GME 
enforces the design rules defined within the meta-modeling, it is not possible for the 
designers using GME to unknowingly make such a mistake while constructing a problem 
instance.  

In order to expand the analytical capabilities of ASCENT, GME was utilized to provide an easily 
configurable, visual representation of the problem. Using these new features, it is possible to see 
a broader, clearer picture of the total design process as well as the global effects of even minor 
design decisions. We create a PIM defining a DSML for DRE system configuration using Me-
taGME, a Meta-modeling environment for constructing DSMLs. Meta-models created with 
MetaGME can be used in conjunction with GME to create models that can be interpreted using a 
BON2 interpreter.  

 

 
Figure 12: GME Class View Meta-modeling of ASCENT 
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The meta-modeling was designed and implemented using GME. Figure 12 shows the Class 
Diagram portion of the AMP meta-modeling. Next, a BON2 interpreter was written in C++ to 
handle model instances. This interpreter traverses the model and creates an XML representation 
of the model, which is output to a file. This XML file matches a previously defined schema for 
use with the Castor XML binding libraries, set of library for demarshalling XML data into Java 
objects. The interpreter then makes a system call to execute the ASCENTGME.jar, passing in the 
XML file as an argument. Within ASCENTGME.jar, several things happen. First, the XML file 
is demarshaled into Java objects. A class then uses these objects to create two complex MMKP 
Problem instances. These two problem instances, along with a total budget value, are passed to 
ASCENT.  

ASCENT executes, and returns the best hardware and software solutions, as well as their 
combined cost and combined value as shown in Figure 13. Next, a First Fit Decreasing (FFD) 
Bin-packer uses these solutions along with their resource requirements to determine a valid 
deployment. This deployment data, along with the total cost, total value, hardware solution and 
software solution, is then written to a configuration file. The interpreter, having halted until the 
system call to execute the jar file terminates, then parses this configuration file. Using this data, 
the ASCENT solution and deployment are written back into the model. These solutions can then 
be examined and analyzed by designers. Designers can then change problem parameters, execute 
the interpreter once again, and examine the effects of the changes to the problem on the solution 
generated. This allows designers to rapidly examine multiple DRE system configuration design 
scenarios, resulting in substantially increased knowledge of the DRE system design space. 

 
Figure 13: GME Model of Configuration Solution with AMP 

4.6 Concluding Remarks 

Determining valid configurations for Distributed Real-time Embedded systems is hard. 
Designers must take into account a myriad of constraints including resource constraints, real-
time constraints, QoS constraints, and other domain specific constraints. The difficulty of these 
tasks is exacerbated by the presence of a plethora of potential COTS components for inclusion in 
the configuration, with each providing varying quality of service and functionality, and requiring 
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different amounts of computational resources and carrying a financial cost for purchasing. The 
high availability of COTS components results in an exponential number of potential DRE system 
configurations. As a result, manual techniques for determining valid DRE system configurations 
are far too cumbersome. Even exact automated techniques, such as the use of Constraint 
Satisfaction Problems (CSPs) require a prohibitive amount of time to execute. Approximation 
techniques, such as ASCENT, however, do not require an exhaustive search of the vast design 
space allowing a much more rapid execution while often resulting in solutions with over 95% 
optimality.  

The use of complex programmatic techniques, however, often have a steep learning curve and 
require large amounts of coding to construct a problem for execution. Due to the complex coding 
involved, these techniques carry the added burden of being error prone when defining problem 
instances. To combat these difficulties, we utilized an MDA-based approach that utilized GME 
for constructing problem instances and displaying valid solutions for DRE system 
configurations. The following are lessons learned during the creation of the ASCENT Modeling 
Platform (AMP):  

 Rapid problem construction - Through the use of GME, problems could be constructed in a 
fraction of the time of using programmatic techniques.  

 Reduced errors – Since GME uses a DSML that enforces the many complex design 
constraints associated with DRE system configuration, users of AMP are prevented from 
constructing a configuration problem that is invalid.  

 Facilitated design space exploration – Solutions are posted directly back into the model for 
analysis by system designers. Designers can then change problem parameters within the 
model and execute the interpreter to explore multiple configuration scenarios, resulting in an 
increased understanding of the design space. 

 Multiple Execution Options - Currently ASCENT is the only technique that is executed 
upon interpreting models. Other techniques, such as the use of CSP solvers, should be 
implemented to determine solutions to for problems with an appropriately reduced number of 
candidate components. 

The current version of AMP with example code is available in open-source form at ascent-
design-studio.googlecode.com. 

  

Approved for Public Release; Distribution Unlimited 
28



5. Extending Model-driven Configuration Automation to Product 
Line Architectures 

This section extends our work on model-driven configuration automation to product line 
architectures, which are common in DoD systems. 

5.1 Introduction 

Emerging trends and challenges. Product-line architectures (PLAs) enable the development of 
a group of software packages that can be retargeted for different requirement sets by leveraging 
common capabilities, patterns, and architectural styles. Although PLAs simplify the development 
of new applications by reusing existing software components, they require significant testing to 
ensure that valid variants function properly. Not all variants that obey the compositional rules of 
PLA function properly, which motivates the need for powerful testing methods and tools. For 
example, connecting two components with compatible interfaces can produce a non-functional 
variant due to assumptions made by one component, such as boundary conditions, that do not 
hold for the component to which it is connected. 

The numerous points of variability in PLAs also yield variant configuration spaces with 
hundreds, thousands, or more possible variants. It is therefore crucial that PLAs undergo 
intelligent testing of the variant configuration space to reduce the number of configurations that 
must be tested. A key challenge in performing intelligent testing of the solution space is 
determining which variants will yield the most valuable testing results, such as performance data.  

Solution approach → Model-driven testing and domain analysis of product-line 
architectures. Model-driven Architectures (MDA) are a development paradigm that employs 
models of critical system functionality, model analysis, and code generation to reduce the cost of 
implementing complex systems. MDA offers a potential solution to the challenges faced in 
testing large-scale PLAs. MDA can be used to model the complex configuration rules of a PLA, 
analyze the models to determine effective test strategies, and then automate test orchestration. 
However, effectively leveraging MDA to improve test planning and execution requires 
determining precisely what PLA design properties to model, how to analyze the models, and how 
best to leverage the results of these analyses. 

5.2 PLA Modeling, Domain Analysis, and Testing Challenges 

Although PLAs can increase software reuse and amortize development costs, PLA configuration 
spaces are hard to analyze and test manually. Deploying, configuring, and testing a PLA in 
numerous configurations without intelligent modeling, domain analysis, and automation is 
expensive and/or infeasible. Large-scale product variants may consist of thousands of component 
types and instances that must be tested. This large solution space presents the following key 
challenges to developing a PLA: 

 Challenge 1: Manually managing a PLA’s configurations and constraints. Traditional 
processes of identifying valid PLA variants involve software developers determining 
manually the software components that must be in a variant, the components that must be 
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configured, and how the components must be composed. Such manual approaches are 
tedious error-prone, and do not scale well.  

 Challenge 2: Determining what PLA configurations to test through domain analysis. 
With hundreds or thousands of potential configurations, testing each possible configuration 
may not be feasible or cost effective. Developers must determine which PLA configurations 
will yield the most valuable information about the capabilities of different regions of the PLA 
configuration space. Determining how to perform this domain analysis is hard.  

 Challenge 3: Managing the complexity of configuring, launching, and testing hundreds 
of valid configuration and deployment. Ad hoc techniques often employ build and 
configuration tools, such as Make and Another Neat Tool (ANT), but application developers 
still must manage the large number of scripts required to perform the component instal-
lations, launch tests, and report results. Developing custom deployment and configuration 
scripts for each variant leads to a significant amount of reinvention and rediscovery of 
common deployment and configuration processes. As the number of valid variants increases, 
there is a corresponding rise in the complexity of developing and maintaining each variant’s 
deployment, configuration, and testing infrastructure. Automated techniques can be used to 
manage this complexity. 

 Challenge 4: Evolving deployment, configuration, and testing processes as a PLA 
evolves. A viable PLA must evolve as the domain changes, which presents significant 
challenges to the maintenance of configuration, deployment, and testing processes. Small 
modifications to composition rules can ripple through the PLA, causing widespread changes 
in the deployment, configuration, and testing scripts. Maintaining and validating the large 
configuration and deployment infrastructure is hard.  

5.3 Model-driven Testing and Domain Analysis Techniques for Product-
line Architectures 

This section introduces modeling techniques for capturing PLA configuration rules and then 
describes how these models can be annotated with results from testing. It also presents 
constraint-based optimization techniques that can be used to analyze the model to derive 
configurations to test. 

3.1 Test Automation from Feature Models. 

To address Challenge 3, which is the complexity of deploying, configuring, and testing a PLA, 
we have developed FireAnt [29]. FireAnt is an MDA tool that allows application developers to 
describe the components that form the common building blocks of their PLA and to construct 
feature models specifying how the blocks can be composed to form valid variants. FireAnt 
significantly reduces the cost of testing a PLA in the following key ways: 

 Test, Deployment, and Configuration Infrastructure Generation. FireAnt allows 
developers to describe the target hardware where variants will be deployed. Using a target 
hardware definition and the artifact mapping, FireAnt can automatically package all the 
archive files required to deploy each variant, as well as generate the required configuration 
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scripts. These scripts may be implemented in a variety of languages. Currently, FireAnt 
provides bindings for generating ANT build files. 

 Test Automation. FireAnt can use CSP configuration derivation techniques to generate a 
global configuration script that remotely deploys, configures, and tests variants automatically 
on each possible hardware target.  

FireAnt was developed using the Generic Eclipse Modeling System (GEMS) [28], which is an 
open-source MDA environment built as an Eclipse plug-in. A GEMS-based meta-modeling 
describing the domain of PLA deployment, configuration, and testing was constructed and 
interpreted to create the FireAnt domain-specific modeling language (DSML) for PLAs. 
FireAnt’s modeling environment uses GEM’s support for multiple views to capture the feature 
model, deployment, configuration, and testing requirements of a PLA. The remainder of this 
section discusses how each of these views can be used to manage the complexity of testing a 
PLA and how the view addresses each of the challenges described in Section 5.2. 

5.3.1 FireAnt Feature Modeling 

To facilitate the analysis of the variant solution space and address Challenge 1 requires a formal 
grammar to describe the structure of the PLA and its valid configurations. This customization 
grammar can then be used to automatically generate and explore the variant solution space using 
CSP techniques.  

To capture a formal definition of the PLA, the components on which it is based must be 
modeled. The Feature element is the basic building block in the Logical Composition View. A 
Feature represents an indivisible unit of functionality, such as an EJB or CORBA component. A 
configuration is a valid composition of Features that produces a complete set of application 
functionality. Each configuration may require different source artifacts depending on the features 
that it contains.  

The feature model rules are specified through composition predicates. FireAnt supports that 
standard feature modeling constraints for AND, Exclusive OR and optional features. The 
children of each feature are connected through a composition predicate to their parent to specify 
the rules governing their selection. By capturing PLA compositional variability in a feature 
model through the Logical Composition tree, developers can formally specify how valid variants 
are composed. With a formal specification of the variant construction rules, FireAnt can 
automatically explore the variant solution space to discover all valid compositional variants of 
the PLA.  

5.3.2 Dependency and Deployment Views 

Simply capturing the configuration rules for the PLA is not sufficient to automate deployment 
and testing. FireAnt must have a specification of how the features in the feature model map 
down to individual source artifacts. For example, if the ConstraintsOptimizationModule is 
selected, what Java jar files need to be packaged into the final variant that is tested?  
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To automate the packaging and configuration of variants and address Challenge 3, a dependency 
model must be developed to associate each feature with physical artifacts, such as jar files, it 
relies on. This mapping from physical artifacts to PLA components can be used to automatically 
manage and package the artifacts and configuration scripts required for each variant. The 
dependency model is a platform-specific model in the MDA paradigm. 

In distributed applications, developers may need to test the deployment of the application across 
different numbers and configurations of hardware. FireAnt’s Physical Deployment View allows 
developers to specify rules on how features and their associated artifacts can be mapped to a 
series of remote hosts. Because the physical deployment view is not tied to any specific hardware 
or software implementation, it is a platform-independent model. FireAnt then takes each of these 
possible deployment variants and determines the unique packaging combinations of artifacts that 
are required for all possible valid deployments. Each unique package is called an egg. 

The Physical Composition View shows which physical artifacts are associated with each egg. 
Individual zip archives can be created for each deployment package by traversing the Physical 
Composition View trees. This view manages the complexity of determining what physical 
artifacts should be present in for the deployment of each variant’s features to a host. FireAnt can 
automatically collect and zip all of the required artifacts for a variant’s Assemblies by traversing 
the Physical Composition Tree. 

5.4 Results Summary 

FireAnt uses the techniques described in Section 5.3 to automate (1) the generation of 
deployment scripts for variants, (2) the packaging of artifacts for variants, and (3) the testing of 
variants. These capabilities reduce the upfront cost, A, and enable rigorous testing of PLAs. They 
also address each of the four key challenges outlined in Section 5.2. 

Due to the large number of variants it becomes costly for PLA developers to manually find and 
manage all possible variants without MDA tool support. This complexity increases the initial 
cost, A, of developing a PLA testing infrastructure since a developer must find all valid variants 
and determine which tests are required to ensure the proper functioning of each. In other words, 
A ≥ Dv + Ov, where Dv is the time required to find each valid variant and Ov is the time required 
to generate an orchestration script for each variant that will execute the proper tests.  

FireAnt reduces the initial cost A by automatically exploring the solution space and producing 
visualizations of valid variants for the developer. These capabilities significantly aid developer 
understanding of PLA variability and enables for the automated testing and packaging of each 
variant. Without automating the identification of variants of the PLA to test, it is hard to ensure 
that the PLA is tested properly, which is important in mission-critical domains. 

5.5 Concluding Remarks 

Product-line architectures (PLAs) can significantly improve the reuse of software components 
and decrease the cost of developing applications. The large number of valid variations in a PLA 
must be tested to ensure that only working configurations are used. Due to the large solution 
spaces it is infeasible or overly costly to use traditional ad hoc methods to test a PLA’s variants.  
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By using MDA tools to capture the compositional and deployment variability in PLAs, we 
showed that much of the deployment, configuration, and testing of PLAs can be automated. This 
automation frees developers to focus on implementing reusable components and deployment and 
configuration scripts for known working units of functionality. Our experiments have shown that 
FireAnt can significantly reduce both the initial cost, A, of developing a PLA and the testing cost 
T1 of each variant. FireAnt accomplishes this cost reduction by automating tedious and error-
prone manual tasks, such as solution space exploration. 

The following are our lessons learned from developing FireAnt and applying it to the EJB-based 
Constraints Optimization System (CONST) that schedules pickup requests to vehicles:  

 There is a larger up-front cost to adopt an automated test platform. Initially, the cost of 
developing models for the MDA testing process increases development cost. Over time, 
however, this startup cost is amortized across variants of the SPL saving time and money. 

 Choosing the right statistical analysis technique for test results is an important concern. 
This report introduces a few statistical analyses that can be used to populate quality attribute 
values from test results. There is a wide array of other types of analyses that can be used as 
well. 

 There may be unanticipated problems caused by the composition of two or more 
features that may not be scriptable by FireAnt. For example, complex changes in source 
code may be needed. More work is needed to identify how to automate the generation of the 
deployment and configuration glue of PLA variants. 

 Deployment variations greatly expand the solution space since each variant must be tested 
with each deployment variation. It is thus important to only model realistic deployment 
scenarios to restrict this space. 

In future work, we are pursuing the use of FireAnt to create self-tuning installations. Many high-
performance parallel computing applications, such as the Automatically Tuned Linear Algebra 
Software (ATLAS), run performance tests in multiple configurations as part of the installation 
process. These applications can then interpret the performance results to optimize themselves for 
the given hardware.  

We also plan to expand on the ATLAS approach by allowing FireAnt users to define a fitness 
function based on the performance metrics collected from the individual component tests. The 
FireAnt test automation framework will then be used to iteratively deploy variants in various 
configurations in an attempt to maximize this fitness function.  

Developers only need to create the tests to collect the appropriate data, such as service rate, and 
then provide the logic to perform analyses on the results, such as throughput analysis using 
queuing networks, to score the configurations. FireAnt will use this cost function to 
automatically deploy, configure, test, and score each candidate variant in each valid component 
to hardware configuration. After all testing completes, FireAnt will collect the results and install 
the variant/component to hardware configuration with the highest score. 
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6. Minimizing Number of Processors using BLITZ 

This section focuses on an important topic for resource-constrained DoD-centric systems for 
which it is important to minimize the number of resources used to deploy DoD systems. 

6.1 Introduction 

Software engineers who develop distributed real-time and embedded (DRE) systems must 
carefully map software components to hardware. These software components must adhere to 
complex constraints, such as real-time scheduling deadlines and memory limitations that are hard 
to manage when planning deployments that map the software components to hardware [30]. How 
software engineers choose to map software to hardware has a direct impact on the number of 
processors required to implement a system.  

Ideally, software components for DRE systems should be deployed on as few processors as 
possible. Each additional processor used by a deployment adds size, weight, power consumption, 
and cost to the system [31]. For example, it has been estimated that each additional pound of 
computing infrastructure on a commercial aircraft results in a yearly loss of $100 per aircraft in 
fuel costs. Likewise, each pound of processor(s) requires four additional pounds of cooling, 
power supply, and other support hardware. Naturally, reducing fuel consumption also reduces 
emissions, benefiting the environment [32].  

Several types of constraints must be considered when determining a valid deployment plan, 
which allocates software components to processors. First, software components deployed on 
each processor must not require more resources, such as memory, than the processor provides. 
Second, some components may have co-location constraints, requiring that one component be 
placed on the same processor as another component. Moreover, all components on a processor 
must be schedulable to assure they meet critical deadlines [33].  

Existing automated deployment techniques [34–36] leveraged by software engineers do not 
handle all these constraints simultaneously. For example, Rate Monotonic First-Fit Scheduling 
[35] can guarantee real-time scheduling constraints, but does not guarantee memory constraints 
or allow for forced co-location of components. Co-location of components is a critical 
requirement in many DRE systems. Moreover, if deploying a set of components on a processor 
results in CPU over-utilization, critical tasks performed by a software component may not 
complete by their deadline, which may be catastrophic. DRE software engineers must therefore 
identify deployments that meet these myriad constraints and minimize the total number of pro-
cessors [37].  

This section provides three contributions to the study of software component deployment 
optimizations for DRE systems that address the challenges outlined above. First, we present the 
Bin packing LocatIon Technique for processor minimiZation (BLITZ), which uses bin packing to 
allocate software applications to a minimal number of processors and ensure that real-time 
scheduling, resource, and co-location constraints are simultaneously met. Second, we present a 
case study that motivates the minimization of processors in a production avionics DRE system. 
Third, we present empirical comparisons of minimizing processors for deployments with BLITZ 
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for three different scheduling heuristics versus the simple bin-packing of one component per 
processor used in the avionics case study.  

6.2 Challenges of Component Deployment Minimization  

This section summarizes the challenges of determining a software component deployment that 
minimizes the number of processors in a DRE system.  

 Rate-monotonic scheduling constraints. To create a valid deployment, the mapping of 
software components to processors must guarantee that none of the software components’ 
tasks misses its deadline. Even if rate monotonic scheduling is used, a series of components 
that collectively utilizes less than 100% of a processor may not be schedulable. It has been 
shown that determining a deployment of multiple software components to multiple 
processors that will always meet real-time scheduling constraints is NP-Hard [36].  

 Task co-location constraints. In some cases, software components must be co-located on 
the same processor. For example, variable latency of communication between two 
components on separate processors may prevent real-time constraints from being honored. 
As a result, some components my require co-location on the same processor, which precludes 
the use of bin-packing algorithms that treat each software component to deploy as a separate 
entity.  

 Resource constraints. To create a validate deployment, each processor must provide the 
resources (such as memory) necessary for the set of software components it supports to 
function. Developers must ensure that components deployed to a processor do not consume 
more resources than are present. If each processor does not provide a sufficient amount of 
these resources to support all tasks on the processor, a task will not be able to completely 
execute, resulting in a failure. 

6.3 Deployment Optimization with BLITZ  

The Binpacking LocatIon Technique for processor minimiZation (BLITZ) is a first-fit decreasing 
bin packing algorithm we developed to (1) assign processor utilization values that ensure 
schedulability is not exceeded and (2) enhance existing techniques by ensuring that multiple re-
source and co-location constraints are simultaneously honored.  

6.3.1 BLITZ Binpacking  

The goal of a bin packer is to place a set of items into a minimal set of bins. Each item takes up a 
certain amount of space and each bin has a limited amount of space available for packing. An 
item can be placed in a bin as long as its placement does not exceed the remaining space in the 
bin. Multi-dimensional bin packing extends the algorithm by adding extra dimensions to bins and 
items (e.g., length, width, and height) to account for additional requirements of items. For 
example, an item may have height corresponding to its CPU utilization and width corresponding 
to consumed memory.  

BLITZ uses an enhanced multi-dimensional bin packing algorithm to generate valid deployments 
that honor multiple resource constraints and co-location constraints as well as the standard real-
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time scheduling constraints. In BLITZ, each processor is modeled as a bin and each independent 
component or co-located group of components is modeled as an item. Each bin has a dimension 
corresponding to the available CPU utilization. Each item has a dimension that represents the 
CPU utilization it requires, as well as a dimension corresponding to each resource, such as 
memory, that it consumes. Each bin’s size dimension corresponding to available CPU utilization 
is initialized 100%. The resource dimensions are set to the amount of each resource that the 
processor offers.  

To pack the items, they are first sorted in decreasing order of utilization. Next, BLITZ attempts 
to place the first item in the first bin. If the placement of the item does not exceed the size of the 
bin (available resources and utilization) of the bin (processor), the item is placed in the bin. The 
dimensions of the items are then subtracted from the dimensions of the bin to reflect the addition 
of the item. If the item does not fit, BLITZ attempts to insert the item into the next bin. This step 
is repeated until all items are packed into bins or no bin exists that can contain the item.  

Burchard et al. [36] describe several techniques that use component partitioning and bin-packing 
to reduce total required processors. This work, however, does not account for additional resource 
constraints, such as memory. Furthermore, these techniques do not allow for collocation 
constraints that require specific components to reside on the same processor. 

6.3.2 Utilization Bounds  

Conventional bin-packing algorithms assume that each bin has a static series of dimensions 
corresponding to available resources. For example, the amount of RAM provided by the 
processor is constant. Applying conventional bin-packing algorithms to software component 
deployment is challenge since it is hard to set a static bin dimension that guarantees the 
components are schedulable. Scheduling can only be modeled with a constant bin dimension of 
utilization if a worst-case scheduling of the system is assumed. Liu and Layland [38] have shown 
that a fixed bin dimension of 69.4% will guarantee schedulability, but in many cases tasks can 
have a higher utilization and still be schedulable.  

The Liu-Layland equation states that the maximum processor utilization that guarantees 
schedulability is equal to 2

1/x

−1, where x is the total number of components allocated to the 
processor. With BLITZ, each bin has a scheduling dimension that is determined by the Liu-
Layland equation and the number of components currently assigned to the bin. Each item will 
represent at least one but possibly multiple co-located components. Each time an item is assigned 
to a bin, BLITZ uses the Liu-Layland formula to dynamically resize the bin’s scheduling 
dimension according to the number of components held by the items in the bin.  

If the frequency of execution, or periodicity, of the components’ execution requirements is 
known, higher processor utilization above the Liu-Layland bound is also possible. Components 
with harmonic periods (e.g., periods that can be repeatedly doubled or halved to equal each 
other) can be allocated to the same processor with schedulability ensured, as long as the total 
utilization is less than or equal to 100%.  

Unlike other deployment algorithms [36], [39], BLITZ uses multi-stage packing to exploit 
harmonic periods. In the first stage, components with harmonic periods are grouped together. In 
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each successive stage, the components from the group with the largest aggregate processor 
utilization are deployed to the processors using a first-fit packing scheme. If not all periods of the 
components in a bin are harmonic, an item is allocated to a bin only if the utilization of its com-
ponents fits within the dynamic scheduling Liu-Layland dimension and all other resource 
dimensions. If all component periods within a bin are harmonic, the utilization dimension is not 
dynamically calculated with Liu-Layland and a fixed value of 100% is used. 

To allow for component co-location constraints, BLITZ groups components that require co-
location into a single item. Each item has utilization and resource consumption equal to that of 
the component(s) it represents. Each item remembers the components associated with it. The 
Liu-Layland and harmonic calculations are performed on the individual components associated 
with the items in a bin and not each item as a whole. 

6.4 Empirical Results  

This section presents the results of applying BLITZ to an avionics case study provided by 
Lockheed Martin Aeronautics through the SPRUCE portal, which provides a web-accessible tool 
that pairs academic researchers with industry challenge problems complete with representative 
project data. This case study comprised 14 processors, 89 total components, and 14 co-location 
constraints. We compared 2 different bin-packing strategies against both BLITZ and the baseline 
deployment of this avionics system, produced by the original avionics domain experts.  

6.4.1 Experimental Platform  

All algorithms were implemented in Java and all experiments were conducted on an Apple 
MacbookPro with a 2.4 GHz Intel Core 2 Duo processor, 2 gigabytes of RAM, running OS X 
version 10.5.5, and a 1.6 Java Virtual Machine (JVM) run in client mode. All experiments 
required less than 1 second to complete with each algorithm. 

6.4.2 Processor Minimization with Various Scheduling Bounds  

This experiment compared the following bin-packing strategies against BLITZ and the baseline 
deployment of the avionics system: (1) a worst-case multi-dimensional bin-packing algorithm 
that uses 69.4% as the utilization bound for each bin, (2) a dynamic multi-dimensional bin-
packing algorithm that uses the Liu-Layland equation to recalculate the utilization bound for 
each bin as components are added, and (3) our BLITZ technique that combines dynamic 
utilization bound recalculation with the harmonic period multi-stage packing. We used each 
technique to generate a deployment plan for the avionics system described in Section 6.2. 

Figure 14 shows the original avionics system deployment, as well as deployment plans generated 
by the worst-case bin-packing algorithm, dynamic bin-packing algorithm, and BLITZ. The 
BLITZ technique required 6 fewer processors than the original deployment plan, 3 fewer 
processors than the worst-case bin-packing algorithm, and 1 fewer processor than the dynamic 
bin-packing algorithm.  
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Figure 14: Deployment Plan Comparison 

Figure 15 shows the total reduction of processors from the original deployment plan for each 
algorithm. The deployment plan generated by the worst-case bin-packing algorithm reduces the 
required number of processors by 3 or 21%. The dynamic bin-packing algorithm yields a 
deployment plan that reduces the number of required processors by 5, or 36%. BLITZ reduces 
the number of required processors even further, generating a deployment plan that requires 6 
fewer processors, a 43% reduction.  

 

Figure 15: Scheduling Bound versus Number of Processors Reduced 

6.5 Concluding Remarks  

Determining component deployments that minimize the number of required processors is hard. 
This problem is exacerbated by proving that software applications are schedulable for a chosen 
deployment. Using bin packing algorithms, such as first-fit decreasing, the entire deployment 
space need not be searched. By using our BLITZ algorithm (which combines first-fit decreasing 
bin packing with proven utilization bounds based on data characteristics), valid and near minimal 
deployments can be determined. Based on our work with BLITZ thus far, we learned the 
following lessons pertaining to deployment for DRE systems:  
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 Grouping based on harmonic periods improves packing tightness. BLITZ combines the 
Liu-Layland equation with the increased utilization bound of components with harmonic 
execution periods to maximize the utilization of each processor during deployment. As a 
result, tasks can be clustered on fewer processors, reducing the processors required.  

 Processor minimization depends on real-time benchmarks. BLITZ has been shown to 
greatly reduce the number of required processors in a DRE system of an extensively 
benchmarked real-time system. Without knowledge of periodicity, resource constraints, and 
co-location constraints, BLITZ cannot be fully utilized. It is essential to develop tools that 
effectively simulate and thoroughly benchmark DRE systems before they are deployed so 
that the full capabilities of BLITZ can be applied.  

The current version of BLITZ with example code is available in open-source form at ascent-
design-studio.googlecode.com. The industry challenge problem that is the basis for 
this report can be found at www.sprucecommunity.org. 
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7. Minimizing Network Bandwidth Usage with NOMAD 

This section describes work that extends our approach to deployment optimizations by focusing 
on minimizing the use of network resources. 

7.1 Introduction 

Distributed Real-time Embedded (DRE) system designers create system deployments by 
mapping multiple software components to hardware. These deployments must satisfy multiple 
requirements, such as real-time constraints, resource constraints, collocation constraints, 
schedulability constraints, and budgetary constraints. Due to quantity of these constraints, 
creating a mapping of software components to hardware, known as a deployment plan, is 
extremely difficult. 

Multiple DRE system deployments may exist that satisfy these constraints but vary in 
performance provided and resources required. Therefore, designers must also strive to determine 
a deployment that maximizes system performance while minimizing other system attributes, 
such as network bandwidth usage, power consumption, computational resource requirements 
such as memory, and/or financial cost. For example, a system that has a minimal financial cost 
and provides identical or marginally decreased performance in comparison to another extremely 
expensive system could be considered vastly superior. 

DRE systems are subject to several constraints. Real-time constraints require that software 
execution complete within a set amount of time without exceeding predefined deadlines. For 
software to execute in a predictable manner, a scheduling of when each software task will utilize 
the processor must be determined. The ability to create this schedule for a set of software tasks is 
called schedulability and must be guaranteed for a deployment to be valid. 

Collocation constraints may exist between multiple software components that require or prohibit 
their placement on a common processor. For example, fault tolerance concerns may require that 
two software tasks that provide the same functionality are not allocated to the same processor. 
Budgetary constraints define the total financial cost of constructing a deployment that cannot be 
exceeded. Therefore, the combined purchased cost of all hardware and other infrastructure, such 
as power, must not exceed the project budget. 

Many DRE systems are mobile or deployed to remote environments without access to 
centralized resources, such as a power grid. Therefore, it is critical that resource consumption, 
such as power consumption, is minimized. For example, an Unmanned Aerial Vehicle (UAV) 
may fly hundreds of miles without having access to a centralized power source. To circumvent 
this limitation, UAVs draw power from on-board batteries that are capable of supplying a finite 
amount of power. 

While adding batteries to a deployment increases the power availability, it also increases the 
weight and cost of the deployment, resulting in slower, more expensive UAVs that could 
potentially not fly as far, carry as much equipment, or loiter as long as the original deployment 
without additional batteries. Therefore, it is critical to investigate deployments that reduce the 
resource requirements of a system while maintaining system performance. 
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Design teams typically construct DRE system deployments in a distributed manner. For example, 
a few members of the design team may focus on satisfying schedulability constraints, while 
another group examines satisfying resource constraints. This allows members with heightened 
expertise in a specific technical area to focus on a subset of the problem without being hindered 
by being forced to examine other areas. 

Due to decentralized design, it is not always clear what repercussions the design decisions of one 
group will have on another. Exacerbating this problem, the design groups may use different 
constraint specific models, such as Ptolemy, RT-Maude, Excel, or UML, to model design 
constraints and determine potential deployments. Once each group has determined a solution, 
considerable time and effort must be spent combining the solutions into a single representation 
and verifying that the deployment as a whole meets all constraints. 

When constructing a DRE system deployment, system designers must determine how to assign 
the software required by the system to the hardware of the system for execution. The total 
software of the system can be split into individual units of software, called software tasks, which 
provide additional functionality to the final system. These software tasks require a discrete 
amount of computational resources, such as memory, processor utilization, and network 
bandwidth. The amounts of these resources required vary between each task. For the software 
tasks to execute, they must be allocated to a processor that possesses the necessary amount of 
resources. 

Each additional processor used in the deployment increases the cost and power consumption of 
the system. Therefore, it is essential to minimize the number of processors required by the 
deployment. Fortunately, multiple software tasks can be assigned to a processor. Since the 
resource usage, real-time requirements, schedulability, and collocation constraints of each task 
differ, they cannot be arbitrarily assigned to processors. Optimally, the software tasks should be 
allocated in such a way that all design constraints are met while also minimizing the number of 
processors required and reducing system cost.  

To do this we created BLITZ explained in Section 6 to minimize the number of processors 
required by a DRE system deployment. This technique, however, treats software tasks as stand-
alone entities that cannot interact with one another unless collocated on a common processor. 
Due to the availability of a network between processors, software tasks are capable of 
communicating with one another regardless of their allocation. Certain software tasks must be 
able to transmit to other software tasks for either of them to function.  

However, the use of a network for transmitting information between software tasks has several 
drawbacks. First, the latency of transmissions between processors differs based on the amount of 
traffic in the link that connects them and the topography of the network, which can make 
schedulability and real-time constraints more difficult to articulate and satisfy. Second, each 
communication between software tasks on separate processors requires additional power to 
transmit and receive data. Finally, software tasks that share the same processor can completely 
bypass the network to communicate, resulting in faster, more reliable communication that 
requires considerably less power by minimizing network bandwidth consumption. 
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Solution Approach→Collocation of Network Intensive Software Tasks: Here we present a 
methodology for intelligently allocating software tasks to processors in such a way that ensures 
all design constraints are met while reducing total network bandwidth consumption. Placing 
software tasks that require large amounts of bandwidth to communicate on a common processor 
reduces the need for network transmissions. The software tasks can use the hardware on the 
processor to communicate without utilizing the network, resulting in decreased network 
bandwidth and power consumption. 

This section also provides four contributions to the area of DRE system deployment. First, we 
present the NetwOrk MinimizAtion Depolyment (NOMAD) technique for determining system 
deployments that satisfy DRE system constraints while minimizing network bandwidth 
consumption. Second, we present a case study of the application of NOMAD to minimize the 
network bandwidth of a DRE aeronautics system. Third, we present the New Associative Object 
Model of Integration (NAOMI), a multi-model manager tool for handling different design 
constraint representations. Last, we compare our empirical results with an existing aeronautics 
system to demonstrate the potential reduction of network bandwidth consumption. 

7.2 Challenges in Deployment Network Bandwidth Minimization 

Constructing a system deployment plan consists of assigning software tasks to processors for 
execution. Several constraints, such as real-time constraints, fault tolerance constraints, 
budgetary constraints, resource constraints, and collocation constraints must be satisfied. If one 
or more of these constraints are violated, the system deployment will exhibit unpredictable 
behavior potentially causing catastrophic system failures. 

Several valid deployments may exist that satisfy all required constraints. These deployments, 
however, require different amounts of power and hardware to function and carry different 
financial costs. Since resource availability and project budgets are normally limited, a 
deployment that requires less power, hardware, or money to deploy is certainly favorable to a 
more expensive deployment that requires additional resources. Therefore, it is essential to 
determine a deployment that not only satisfies all constraints, but also minimizes resource 
requirements and deployment cost. 

7.2.1 Challenge 1: Tolerating Processor Failure 

DRE systems must remain functional in the inevitable event of system failures. These failures 
could be the result of poorly constructed hardware, harsh environmental conditions, or even as a 
result of enemy attacks. The amount of failures that a system must be able to sustain is unique to 
the domain and application of the deployment. The primary method for increasing the fault 
tolerance capabilities of a system deployment is to create replicas.  

A replica is an additional node that is deployed with the same software tasks as an existing node. 
In the event that the original node fails for any reason, the replica can continue to provide the 
functionality that the failed node provided. Replicating existing software allocations onto 
additional processors increases the fault tolerance of a system deployment. However, there are 
several disadvantages to deploying a large quantity of replicas. Each replica requires the 
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purchase of additional hardware, resulting in increased system cost, power consumption, weight, 
and heat generation. 

7.2.2 Challenge 2: Collocating Software Tasks 

Real-time constraints may require that two or more software tasks be allocated to the same 
processor. For example, two software tasks may require the transmission of large amounts of 
data between each other. If the software tasks are allocated to separate processors, then data must 
be transmitted over the network. As a result of network latency, the software tasks would take 
additional time to function. This could lead to missed deadlines and the violation of real-time 
constraints. Further, if two software tasks require each other to function and are placed on 
separate processors, then the failure of either processor would prevent both software tasks from 
executing to completion. 

The collocation of these two tasks on the same processor allows them to communicate with each 
other without utilizing the network, resulting in reduced communication latency. Also, the 
collocation of two software tasks that depend on each other to function reduces the number of 
processor failures that would disallow the execution of the tasks. 

7.2.3 Challenge 3: Minimizing Resource Requirements 

DRE systems require various amounts of multiple resources, such as memory and power, to 
function. As the computational requirements of the software tasks included in the deployment 
increase, additional resources must be purchased and included in the system deployment. 
Further, additional power must be supplied to meet power consumption requirements as the 
number of processors in the deployment increases. However, it is not always simple or even 
possible to increase the power production of a DRE system. 

For example, Unmanned Aerial Vehicles (UAVs) must meet stringent weight requirements. As 
the weight of the UAV increases, the distance that the aircraft can fly, the amount of time it can 
loiter, and the size of the payload that it can deliver to a target decreases, reducing its 
effectiveness. Since UAVs are mobile crafts, batteries must be utilized to produce the necessary 
power. These batteries, however, are extremely heavy and expensive. Therefore, reducing the 
power requirements of the system can reduce the size and number of batteries need on the 
aircraft, resulting in a cheaper, more effective UAV. 

7.2.4 Challenge 4: Meeting Budgetary Constraints 

Traditionally, hardware components, such as processors, and software applications must be 
purchased before they can be included in a system deployment. As deployments increase in size, 
the computational resource requirements increase, requiring the purchase of additional hardware. 
As a result of these purchases, the financial cost of the system deployment increases.  

Most projects, however, have a finite project budget for constructing and deploying the system. 
The total cost of the system must not exceed the project budget. Further, it is extremely desirable 
that the financial cost of the system be minimized so that excess funds can be saved for future 
endeavors. 
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Several factors directly impact the financial cost of a system deployment. First, creating 
additional replicas to provide increased fault tolerance requires the purchasing of additional 
hardware. Second, each additional processor increases resource requirements of the deployment. 
Additional resources, such as batteries to provide power, must be purchased and added to the 
system deployment. Finally, each additional processor increases the heat generation of the 
system, requiring that additional heat sinks and cooling mechanisms be purchased and included 
in the deployment. 

7.2.5 Challenge 5: Ensuring Schedulability of Software Tasks 

Assigning multiple software tasks to a processor rather than allocating a single processor for 
each software task greatly reduces the number of processors required, resulting in reduced 
system cost, size, and network bandwidth consumption. However, the inclusion of multiple 
software tasks to a single processor requires that a schedule be created that allows all of the tasks 
to execute to completion prior to real-time deadlines. Otherwise, all of the software tasks may 
not be given enough time on the processor, resulting in unpredictable system behavior and 
potentially system failure. Designers must ensure that at least one valid execution schedule exists 
when assigning additional software tasks to a processor. This constraint, known as 
schedulability, must be satisfied to guarantee that all software tasks will receive enough time on 
the processor to execute to completion before deadlines are reached. 

7.2.6 Challenge 6: Reconciling Multiple Constraint Models 

The creation of a DRE system deployment requires the formalization of many constraints, 
including fault tolerance constraints, collocation constraints, resource constraints, and budgetary 
constraints. It is rare, however, that a single person defines these constraints. Normally, a small 
group of people tackles only a single facet of the system design and deployment. One person 
may focus on the fault tolerance requirements of the system while another examines resource 
requirements. These two people may utilize entirely different methodologies and represent their 
results in models of different types. 

For example, one group may use a Ptolemy model for analyzing fault tolerance requirements 
while another person may use an Excel model for defining the budgetary restrictions of the 
system. The final system deployment, however, must take into account all off the constraints 
regardless of their representation. Therefore, techniques must be constructed that allow seamless 
data exchange between models of different types so that a system deployment can be constructed 
that meets all design constraints. 

7.3 Network Bandwidth Minimization with NOMAD 

The NetwOrk MinimzAtion Deployment (NOMAD) technique uses a hybrid evolutionary-
heuristic algorithm that utilizes Particle Swarm Optimization (PSO) [40] and bin packing 
techniques to determine deployments that strive to minimize the network bandwidth 
consumption of a deployment while also honoring the constraints described in Section 7.2. This 
technique, however, requires that all design constraints, available hardware components, 
software tasks, and metadata describing the execution of the software tasks be available in a 
common format for input into the technique.  
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This poses a formidable obstacle since many distributed, disparate groups define these 
constraints with minimal communication between one another. As a result, the design constraints 
are often represented in different complex models. Therefore, it is difficult to extract the 
necessary data from these models to serve as input to NOMAD. Multi-modeling tools exist, 
however, such as NAOMI M3, for managing multiple model representations of data. NAOMI is 
utilized to facilitate data sharing and aggregation between models of different types so that 
dissimilarly represented constraint data can be supplied to the NOMAD algorithm. Once the 
design data has been collected using NAOMI, NOMAD can execute to determine a deployment 
that minimizes network bandwidth consumption.  

NOMAD is a hybrid algorithm utilizing bin-packing and PSO techniques. First, the scheduling 
data of the software tasks is analyzed. This data includes the periodicity of each task and the 
processor utilization requirement of each task. The periodicity of a task is the set of intervals that 
defines when a software task must utilize the processor. The processor utilization defines what 
percentage of the processor must be available to the task during the interval for the task to 
complete before its deadline arrives.  

Techniques have been studied that can ensure that a schedule exists for a set of tasks based on 
the periodicity data and processor utilization. For example, if the software tasks exhibit harmonic 
periodicity, a set of tasks can be considered schedulable if the combined processor utilization is 
less than 100% for any interval. The Liu-Layland bound [38], as discussed in the previous 
section, is an equation that uses the number of software tasks allocated to a processor to set a 
bound that guarantees schedulability. Finally, regardless of the number of software tasks 
allocated to a processor schedulability can be guaranteed if the combined utilization of the tasks 
does not exceed 69.4%, as proven by Liu-Layland. 

First Fit Decreasing (FFD) bin-packing can be used to determine deployments that minimize 
network bandwidth consumption while also meeting all design constraints. The software tasks 
are sorted in decreasing order by the network bandwidth requirements between individual 
software tasks. Software components that require collocation are combined and treated as a 
single task. We attempt to place the first software task pair onto the first processor, represented 
as a bin. If the combined processor utilization is less than the appropriate scheduling bound, then 
the two tasks will satisfy real-time and schedulability constraints. If enough computational 
resources are available on the processor, then the software tasks are deployed to the processor. If 
they cannot fit then the two tasks will not be able to be collocated and the next task set is 
attempted for placement. 

There is an exponential number of potential deployment plans that could be selected. Due to the 
NP-hard nature of this problem, it would take a prohibitive amount of time to examine all of the 
potential software task allocations. While FFD bin-packing usually delivers quality solutions, 
other solutions may exist that cannot be found by simply sorting the tasks in order of processor 
utilization. To discover these solutions, we use PSO to determine an initial packing of a small 
subset of the software tasks. Once several of the software tasks are allocated, FFD bin-packing is 
commenced to allocate the remaining software tasks to the processors. This allows for the 
discovery of solutions that would not be found by using FFD bin-packing alone. 
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7.4 Concluding Remarks 

DRE system deployment requires that myriad design constraints be satisfied. This characteristic 
combined with the exponential number of potential system deployments makes determining 
deployments with minimal network minimization difficult. This difficulty is further compounded 
by the distributed nature of DRE system design across many small teams that utilize different 
modeling methodologies to represent design constraints. Multi-modeling mangers, such as 
NAOMI, can be used to mitigate the difficulties of using multiple model representations of 
constraints across a single project. Without tools such as NAOMI, the time and effort required 
aggregating and supplying design constraints for use with cutting-edge deployment techniques 
would be vastly increased, potentially to the point of becoming prohibitive.  

NOMAD can be used to determine deployments that have drastically reduced network 
bandwidth. By using hybrid evolutionary-heuristic algorithms with PSO and FFD bin-packing, 
new valid deployments can be determined in a matter of minutes, despite the staggering size of 
the exponential deployment state space. As a result of network bandwidth minimization, power 
consumption is reduced and execution time is expedited, resulting in more effective DRE system 
deployments. 
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8. ScatterD: Multi-objective Deployment Optimization 

This section describes our effort on the deployment and configuration of distributed real-time 
and embedded (DRE) systems focusing on multi-objective deployment optimizations, i.e., when 
considering more than one parameter as a constraint in contrast to only one as described in 
Sections 6 and 7. 

8.1 Introduction 

Current trends and challenges. Several trends are shaping the development of embedded 
avionics systems. First, there is a migration away from older federated computing architectures 
where each subsystem occupied a physically separate hardware component to integrated 
computing architectures where multiple software applications implementing different 
capabilities share a common set of computing platforms. Second, publish/subscribe (pub/sub) 
based messaging systems are increasingly replacing the use of hard-coded cyclic executions. 

These trends are yielding a number of benefits. For example, integrated computing architectures 
create an opportunity for system-wide optimization of deployment topologies, which map 
software components and their associated tasks to hardware processors. Optimized deployment 
topologies can pack more software components onto the hardware, thereby optimizing system 
processor, memory, and I/O utilization [41–43]. Increasing hardware utilization can decrease the 
total hardware processors that are needed, lowering both implementation costs and maintenance 
complexity. Moreover, reducing the required hardware infrastructure has other positive side 
effects, such as reducing weight and power consumption.  

Open problems. Developing computer-assisted methods and tools to deploy software to 
hardware in embedded systems is hard [30] [44] due to the number and complexity of constraints 
that must be addressed. For example, developers must ensure that each software component is 
provided with sufficient processing time to meet any real-time scheduling constraints [45]. 
Likewise, resource constraints (such as total available memory on each processor) must also be 
respected when mapping software components to hardware components [45][46]. Moreover, 
assigning real-time tasks in multiprocessor and/or single-processor machines is NP-Hard [36], 
which means that such a large number of potential deployments exist that it would take years to 
investigate all possible solutions. 

Current algorithmic deployment techniques are largely based on heuristic bin-packing [34–36], 
which represents the software tasks as items that take up a set amount of space and hardware 
processors as bins that provide limited space. Bin-packing algorithms try to place all the items 
into as few bins as possible without exceeding the space provided by the bin in which they are 
placed. These algorithms use a heuristic, such as sorting the items based on sized and placing 
them in the first bin they fit in, to reduce the number of solutions that are considered and avoid 
exhaustive solution space exploration. 

Conventional bin-packing deployment techniques take a one-dimensional view of deployment 
problems by just focusing on a single deployment concern at a time. Example concerns include 
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resource constraints, scheduling constraints, or fault-tolerance constraints. In production avionics 
systems, however, deployments must meet combinations of these concerns simultaneously. 

Solution approach -> Computer-assisted deployment optimization. This section describes 
and validates a method and tool called ScatterD that we developed to perform computer-assisted 
deployment optimization for avionics systems. The ScatterD model-driven engineering 
deployment tool implements the Scatter Deployment Algorithm [47], which combines heuristic 
bin-packing with optimization algorithms, such as genetic algorithms [48] or swarm optimization 
techniques [49] that use evolutionary or bird flocking behavior to perform blackbox 
optimization. This report shows how avionics system developers have used ScatterD to automate 
the reduction of processors and network bandwidth in complex embedded system deployments. 

8.2 Modern Flight Embedded Avionics Systems: A Case Study 

Over the past 20 years, avionics systems have become increasingly sophisticated. Modern 
aircraft now depend heavily on software executing atop a complex embedded network for 
higher-level capabilities, such as more sophisticated flight control and advanced mission 
computing functions. To accommodate the increased amount of software required, avionics 
systems have moved from older federated computing architectures to integrated computing 
architectures that combine multiple software applications together on a single computing 
platform containing many software components. 

The class of avionics system targeted by our work is a networked parallel message-passing 
architecture containing many computing nodes. At the individual node level, ARINC 653-
compliant time and space partitioning separates the software applications into sets with 
compatible safety and security requirements. Inside a given time partition, the applications run 
within a hard real-time deadline scheduler that executes the applications at a variety of harmonic 
periods. 

Integrated computing architectures have many benefits and challenges. Key benefits include 
better optimization of hardware resources and increased flexibility, which result in a smaller 
hardware footprint, lower energy use, decreased weight, and enhanced ability to add new 
software to the aircraft without updating the hardware. The key challenge, however, is increased 
system integration complexity. In particular, while the homogeneity of processors gives system 
designers a great deal of freedom allocating software applications to computing nodes, 
optimizing this allocation involves simultaneously balancing multiple competing resource 
demands. 

For example, even if the processor demands of a pair of applications would allow them to share a 
platform, their respective I/O loads may be such that worst-case arrival rates would saturate the 
network bandwidth flowing into a single node. This problem is complicated for single-core 
processors used in current integrated computing architectures. Moreover, this problem is being 
exacerbated with the adoption and fielding of multi-core processors, where competition for 
shared resources expands to include internal buses, cache memory contents, and memory access 
bandwidth. 
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8.3 Deployment Optimization Challenges 

This section describes the challenges facing developers when attempting to create a deployment 
topology for an avionics system. The discussion below assumes a networked parallel message-
passing architecture (such as the one described in Section 8.2). The goal is to minimize the 
number of required processors and the total network bandwidth resulting from communication 
between software tasks.  

 Challenge 1: Satisfying rate-monotonic scheduling constraints efficiently. The 
deployment topology must ensure that the set of software components allocated to each 
processor are schedulable and will not miss real-time deadlines. Finding a deployment 
topology for a series of software components that ensures schedulability of all tasks is called 
“multiprocessor scheduling” and is NP-Hard [36]. 

 Challenge 2: Reducing the complexity of memory, cost, and other resource constraints. 
Processor execution time is not the only type of resource that must be managed while 
searching for a deployment topology. Hardware nodes often have other limited but critical 
resources, such as main memory or core cache necessary for the set of software components 
they support. 

 Challenge 3: Satisfying complex dynamic network resource and topology constraints. 
Embedded avionics systems must often ensure that not only processor resource limitations 
are adhered to, but network resources (such as bandwidth) are not over consumed. Adding 
the consideration of network resources to deployment substantially increases the complexity 
of finding a software-to-hardware deployment topology mapping that meets requirements. 

8.4 ScatterD: A Deployment Optimization Tool to Minimize Bandwidth and 
Processor Resources 

Heuristic bin-packing algorithms work well for multiprocessor scheduling and resource 
allocation. However, heuristic bin-packing is not effective for optimizing designs for certain 
system-wide properties, such as network bandwidth consumption, and hardware/software cost. 
Below we explain how ScatterD integrates the ability of heuristic bin-packing algorithms to 
generate correct solutions to scheduling and resource constraints with the ability of metaheuristic 
algorithms to flexibly minimize network bandwidth and processor utilization and address the 
challenges in Section 8.3. 

8.4.1 Satisfying real-time scheduling constraints with ScatterD 

ScatterD ensures that the numerous deployment constraints (such as the real-time schedulability 
constraints described in Challenge 1 from Section 8.3) are satisfied by using heuristic bin-
packing to allocate software tasks to processors. Conventional bin-packing algorithms for 
multiprocessor scheduling are designed to take as input a series of items (e.g., tasks or software 
components), the set of resources consumed by each item (e.g., processor and memory), and the 
set of bins (e.g., processors) and their capacities. The algorithm outputs an assignment of items 
to bins (e.g., a mapping of software components to processors). 
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ScatterD ensures schedulability of the avionics system by using response-time analysis [50]. The 
response time resulting from allocating a software task of the avionics system to a processor is 
analyzed to determine if a software component can be scheduled on a given processor before 
allocating its associated item to a bin. If the response time is fast enough to meet the real-time 
deadlines of the software task, the software task can be allocated to the processor. 

8.4.2 Satisfying Resource Constraints with ScatterD 

To ensure that other resource constraints (such as memory requirements described in Challenge 2 
from Section 8.3) of each software task are met, we specify a capacity for each bin that is defined 
by the amount of each computational resource provided by the corresponding processor in the 
avionics hardware platform. Similarly, the resource demands of each avionics software task 
define the resource consumption of each item. Before an item can be placed in a bin, ScatterD 
verifies that the total consumption of each resource utilized by the corresponding avionics 
software component and software components already placed on the processor does not exceed 
the resources provided. 

8.4.3 Minimizing Network Bandwidth and Processor Utilization with ScatterD 

To address deployment optimization issues (such as those raised in Challenge 3 from Section 
8.3), ScatterD uses heuristic bin-packing to ensure that schedulability and resource constraints 
are met. If the heuristics are not altered, the bin-packing algorithm will always yield the same 
solution for a given set of software tasks and processors. The number of processors utilized and 
the network bandwidth requirements will therefore not change from one execution of the bin-
packing algorithm to another. In a vast deployment solution space associated with a large-scale 
avionics system, however, there may be many other deployments that substantially reduce the 
number of processors and network bandwidth required, while also satisfying all design 
constraints. 

To search for avionics deployment topologies with minimal processor and bandwidth 
requirements—while still ensuring that other design constraints are met—ScatterD uses 
metaheuristic algorithms to seed the bin-packing algorithm. In particular, metaheuristic 
algorithms are used to search the deployment space and select a subset of the avionics software 
tasks that must be packed prior to the rest of the software tasks. By forcing an altered bin-
packing order, new deployments with different bandwidth and processor requirements are 
generated.  

Since bin-packing is still the driving force behind allocating software tasks, design constraints 
have a higher probability of being satisfied. By using metaheuristic algorithms to search the 
design space— and then using bin-packing to allocate software tasks to processors—ScatterD 
can generate deployments that meet all design constraints while also minimizing network 
bandwidth consumption and reducing the number of required processors in the avionics 
platform. 
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8.5 Results Summary 

The first experiment examined applying ScatterD to minimize the number of processors in the 
legacy avionics system deployment, which originally consisted of software tasks deployed to 14 
processors. Applying ScatterD with swarm optimization techniques and genetic algorithms 
resulted in increased utilization of the processors, reducing the number of processors needed to 
deploy the software to eight in both cases. The remaining six processors could then be removed 
from the deployment without affecting system performance, resulting in a 43% reduction. 

The ScatterD tool was also applied to minimize the bandwidth consumed due to communication 
by software tasks allocated to different processors in the legacy avionics system. Reducing the 
bandwidth requirements of the system leads to more efficient, faster communication while also 
reducing power consumption. 

8.6 Concluding Remarks 

Optimizing deployment topologies on a legacy embedded avionics system can yield substantial 
benefits, such as reducing hardware costs and power consumption. The following is a summary 
of the lessons we learned applying our ScatterD tool for deployment optimization to a legacy 
avionics system: 

 Multiple constraints make deployment planning hard. Avionics deployments must adhere 
to a wide range of strict constraints, such as resource, colocation, scheduling, and network 
bandwidth. Deployment optimization tools must account for all these constraints when 
determining a new deployment. 

 A huge deployment space requires intelligent search techniques. The vast majority of 
potential deployments that could be created violate one or more design constraints. 
Intelligent and automated techniques, such as hybrid-heuristic bin-packing, should therefore 
be applied to discover valid “near-optimal” deployments. 

 Substantial processor and network bandwidth reductions are possible. Applying 
hybrid-heuristic bin-packing to the avionics system resulted in 42.8% processor reduction 
and 24% bandwidth reduction. Our future work is applying hybrid-heuristic binpacking to 
other embedded system deployment domains, such as automobiles, multi-core processors, 
and tactical smart phone applications. 

The ScatterD tool is available in open source form in the Ascent Design Studio (ascent-design-
studio.googlecode.com). A document describing the avionics system case study, as well as 
additional information on ScatterD, can be found at the SPRUCE web portal 
(www.sprucecommunity.org), which pairs open industry challenge problems with cutting-edge 
methods and tools from the research community. 
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9. SCORCH: Model-driven  auto-scaling in Cloud Platforms 

This section describes how model-driven technologies can be used to enable auto-scaling in 
cloud platforms, which are increasingly becoming attractive environments for operational DoD 
systems. It also describes how the model-driven technology developed under this effort, 
SCORCH, is used in power management for cloud environments.  

9.1 Introduction 

Current trends and challenges: By the end of 2011, power consumption of computing data 
centers is expected to exceed 10,000,000,000 kilowatt-hours (kWh) and generate over 
40,568,000 tons of CO2 emissions [55–58]. Since data centers operate at only 20-30% 
utilization, 70-80% of this power consumption is lost due to over-provisioned idle resources 
resulting in roughly 29,000,000 tons of unnecessary CO2 emissions. Therefore, applying new 
computing paradigms, such as cloud computing with auto-scaling, to increase server utilization 
and decrease idle time is paramount to creating greener computing environments with reduced 
power consumption and emissions [59–63]. 

Cloud computing is a computing paradigm that uses virtualized server infrastructure and auto-
scaling to dynamically provision virtual OS instances [51]. Rather than over-provisioning an 
application’s infrastructure to meet peak load demands, an application can auto-scale by 
dynamically acquiring and releasing virtual machine instances as load fluctuates. Auto-scaling 
results in increased server utilization and decreased idle time in comparison to over-provisioned 
infrastructures in which superfluous system resources may remain idle, resulting in unnecessary 
power consumption and ultimately superfluous CO2 emissions. Further, by allocating virtual 
machines to applications on demand, cloud infrastructure users can pay for servers incrementally 
rather than investing the large up-front costs to purchase new servers, resulting in reduced up-
front operational costs. 

Although cloud computing can help reduce idle resources and negative environmental impact, 
running with less instantly available computing capacity can impact quality of service as load 
fluctuates. For example, a prime time television commercial advertising a hit new product may 
cause a ten-fold increase in traffic to the advertisers’ website for about 15 minutes. Data centers 
can use existing idle resources to handle this momentary increase in demand and maintain 
quality of service. Without these additional resources, the quality of service of the website would 
degrade, resulting in an unacceptable user experience. However, if this commercial only airs 
twice a week, then these additional resources sit idle for the rest of the week, consuming 
additional power without being utilized. 

Devising mechanisms for reducing power consumption and environmental impact through cloud 
auto-scaling is difficult. Auto-Scaling must ensure that virtual machines can be provisioned and 
booted quickly enough to meet response time requirements as the load changes. If auto-scaling is 
too slow to keep up with load fluctuations, applications may experience a period of poor 
response time while waiting for additional computational resources to come online. One way to 
mitigate this risk is to maintain an auto-scaling queue containing pre-booted and pre-configured 
virtual machine instances that can be allocated rapidly, as shown in Figure 16. 
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When a cloud application requests a new virtual machine configuration from the auto-scaling 
infrastructure, the auto-scaling infrastructure first attempts to fulfill the request with a pre-booted 
virtual machine in the queue. For example, if a virtual machine with Fedora Core 6, JBoss, and 
MySQL is requested, the auto-scaling infrastructure will attempt to find a matching virtual 
machine in the queue. If no match is found, a new virtual machine must be booted and 
configured to match the allocation request. 

 
Figure 16: auto-scaling in a Cloud Infrastructure 

Open problems: A key challenge for developers is determining green settings for the size and 
properties of the auto-scaling queue shared by multiple applications that may have different 
virtual machine configurations [52]. The chosen configurations must meet the configuration 
requirements of multiple applications and reduce power consumption without adversely 
impacting quality of service. For example, a web application may request virtual machine 
instances configured as database, middle-tier Enterprise Java Beans (EJB), or front-end web 
servers. Determining how to capture and reason about the configurations that comprise the auto-
scaling queue is hard due to the large number of configuration options (such as MySQL and SQL 
Server databases, Ubuntu Linux and Windows operating systems, and Apache HTTP and 
IIS/Asp.Net web hosts) offered by cloud infrastructure providers. 

It is even harder to determine the optimal queue size and types of virtual machine configurations 
that will ensure that virtual machine allocation requests can be serviced quickly enough to meet a 
required auto-scaling response time limit. Cost optimization is challenging because each 
configuration placed into the queue can have varying costs based on the hardware resources and 
software licenses it uses. Finally, energy consumption minimization is also difficult as each set 
of hardware resources also consumes a different amount of power. 

Solution approach ⇗ ! Auto-scaling queue configuration derivation based on feature 
models. In this research we explored a Model-Driven Engineering (MDE) approach called the 
Smart Cloud Optimization for Resource Configuration Handling (SCORCH), which is a 
continuation of our earlier effort. SCORCH captures virtual machine configuration options for a 
set of cloud applications and derives an optimal set of virtual machine configurations for an auto-
scaling queue. From the perspective of environmental and power concerns, SCORCH provides 
three contributions to the green computing through MDE based cloud auto-scaling. First, we 
describe an MDE technique for transforming feature model representations of cloud virtual 
machine configuration options into constraint satisfaction problems (CSPs) [53], [54]. Second, 
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we describe another MDE technique for analyzing application configuration requirements, 
virtual machine power consumption, and operating costs to determine what virtual machine 
instance configurations to include in an auto-scaling queue in order to meet an auto-scaling 
response time guarantee while minimizing power consumption. Third, we present empirical 
results from a case study using Amazon’s EC2 cloud computing infrastructure that shows our 
MDE techniques minimize power consumption and operating cost while ensuring that an auto-
scaling response time requirement is met. 

9.2 Challenges of Configuring Virtual Machines in Cloud Environments 

Reducing unnecessary idle system resources by applying auto-scaling queues can potentially 
lead to vast reductions in power consumption and resulting CO2 emissions. However, quality of 
service demands, various configuration requirements and other challenges make achieving a 
greener computing environment difficult. This section describes three key challenges of 
capturing virtual machine configuration options and using this configuration information to 
optimize the setup of an auto-scaling queue to minimize power consumption. Section 9.3 then 
presents SCORCH’s MDE approach to resolving these challenges. 

9.2.1 Challenge 1: Capturing Virtual Machine Configuration Options and Constraints 

Cloud computing can lead to greener computing by reducing power consumption. A cloud 
application can request virtual machines with a wide range of configuration options, such as type 
of processor, amount of memory, OS, and installed middleware, all of which consume different 
amounts of power. For example, the Amazon EC2 cloud infrastructure supports 5 different types 
of processors, 6 different memory configuration options, and over 9 different OS types, as well 
as multiple versions of each OS type [64]. The power consumptions of these configurations 
range from 150 to 610 Watts per hour. These EC2 configuration options cannot be selected 
arbitrarily and must adhere to a multitude of configuration rules. For example, a virtual machine 
running on Fedora Core 6 OS cannot run MS SQL Server. Tracking these numerous 
configuration options and constraints is hard.  

9.2.2 Challenge 2: Selecting Virtual Machine Configurations to Guarantee Auto-scaling 
Speed Requirements 

While reducing idle resources results in less power consumption and greener computing 
environments, cloud computing applications must also meet quality of service demands. A key 
determinant of auto-scaling performance is the types of virtual machine configurations that are 
kept ready to run. If an application requests a virtual machine configuration and an exact match 
is available in the auto-scaling queue, the request can be fulfilled nearly instantaneously. If the 
queue does not have an exact match, it may have a running virtual machine configuration that 
can be modified to meet the requested configuration faster than provisioning and booting a 
virtual machine from scratch. For example, a configuration may reside in the queue that has the 
correct OS but needs to unzip a custom software package, such as a pre-configured Java Tomcat 
Web Application Server, from a shared file system onto the virtual machine. Auto-scaling 
requests can thus be fulfilled with both exact configuration matches and subset configurations 
that can be modified faster than provisioning a virtual machine from scratch. 
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Determining what types of configurations to keep in the auto-scaling queue to ensure that virtual 
machine allocation requests are serviced fast enough to meet a hard allocation time constraint is 
hard. For one set of applications, the best strategy may be to fill the queue with a common 
generic configuration that can be adapted quickly to satisfy requests from each application. For 
another set of applications, it may be faster to fill the queue with the virtual machine 
configurations that take the longest to provision from scratch. Numerous strategies and 
combinations of strategies are possible, making it hard to select configurations to fill the queue 
that will meet auto-scaling response time requirements.  

9.2.3 Challenge 3: Optimizing Queue Size and Configurations to Minimize Energy 
Consumption and Operating Cost 

A further challenge for developers is determining how to configure the auto-scaling queue to 
minimize the energy consumption and costs required to maintain it. The larger the queue, the 
greater is the energy consumption and operating cost. Moreover, each individual configuration 
within the queue varies in energy consumption and cost. For example, a “small” Amazon EC2 
virtual machine instance running a Linux-based OS consumes 150W and costs $0.085 per hour 
while a "Quadruple Extra Large" virtual machine instance with Windows consumes 630W and 
costs $2.88 per hour. It is hard for developers to manually navigate the tradeoffs between energy 
consumption, operating costs and auto-scaling response time of different queue sizes and sets of 
virtual machine configurations. Moreover, there are an exponential number of possible queue 
sizes and configuration options that complicates deriving the minimal power 
consumption/operating cost queue configuration that will meet auto-scaling speed requirements.  

9.3 SCORCH: An MDE Based Optimization Technique for Generating 
Cloud Auto-Scaling Queues 

This section describes the MDE techniques that SCORCH uses to address the challenges of 
optimizing an auto-scaling queue described in Section 9.2. SCORCH resolves these challenges 
by using models to capture virtual machine configuration options explicitly, model 
transformations to convert these models into constraint satisfaction problems (CSPs), and 
constraint solvers to derive the optimal queue size and contained virtual machine configuration 
options to minimize cost while meeting auto-scaling response time requirements. 

 

Figure 17: SCORCH Process 
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The SCORCH MDE process is shown in Figure 17 and is described below:  

 Developers use a SCORCH cloud configuration model to construct a catalog of configuration 
options that are available to virtual machine instances. 

 Each application considered in the auto-scaling queue configuration optimization provides a 
configuration demand model that specifies the configuration for each type of virtual machine 
instance the application will request during its execution lifecycle. 

 Developers provide a configuration adaptation time model that specifies the time required to 
add/remove a feature from a configuration. 

 Developers provide a cost model that specifies the cost to run a virtual machine configuration 
with each feature present in the SCORCH cloud configuration model. 

The cloud configuration model, configuration demand models, and load estimation model are 
transformed into a CSP and a constraint solver is used to derive the optimal auto-scaling queue 
setup. 

9.4 Results Applying SCORCH 

This section presents a comparison of SCORCH with two other approaches for provisioning 
virtual machines to ensure that load fluctuations can be met without degradation of quality of 
service. We compare the energy efficiency and cost effectiveness of each of the approaches for 
provisioning an infrastructure for supporting a set of e-commerce applications. We selected e-
commerce applications due to the high fluctuations in workload that occur due to the varying 
seasonal shopping habits of users. To compare the energy efficiency and cost effectiveness of 
these approaches, we chose the pricing model and available virtual machine instance types 
associated with Amazon EC2. 

We investigated three-tiered e-commerce applications consisting of web front end, middleware, 
and database layers. The applications required 10 different distinct virtual machine 
configurations. For example, one virtual machine required JBOSS, MySql, and IIS/Asp.Net 
while another required Tomcat, HSQL, and Apache HTTP. These applications also utilize a 
variety of computing instance types from EC2, such as high memory, high-CPU, and standard 
instances.  

To model the traffic fluctuations of e-commerce sites accurately we extracted traffic information 
from Alexa (www.alexa.com) for newegg.com (newegg.com), which is an extremely 
popular online retailer. Traffic data for this retailer showed a spike of three times the normal 
traffic during the November-December holiday season. During this period of high load, the site 
required 54 virtual machine instances. Using the pricing model provided by Amazon EC2, each 
server requires 515W of power and costs $1.44 an hour to support the heightened demand 
(aws.amazon.com/economics). 
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9.4.1 Experiment: Virtual Machine Provisioning Techniques 

Static provisioning. The first approach consists of provisioning a computing infrastructure 
equipped to handle worst case demand at all times. In our scenario, this technique would require 
that all 54 servers were run continuously to ensure that response time is maintained. This 
technique is similar to computing environments that do not permit any type of auto-scaling. 
Since the infrastructure can always support the worst-case load, we refer to this technique as 
static provisioning. 

Non-optimized auto-scaling queue. Another approach is to augment the auto-scaling 
capabilities of a cloud computing environment with an auto-scaling queue. In this approach, 
auto-scaling is used to adapt the number of resources to meet the current load that the application 
is experiencing. Since additional resources can be allocated as demand increases, we need not 
boot all 54 servers continuously. Instead, an auto-scaling queue with a virtual machine instance 
for each of the ten different configurations required by the application must be available to be 
allocated on demand. We refer to this technique as non-optimized auto-scaling queue since the 
auto-scaling queue is not optimized. 

SCORCH. In this approach we use SCORCH to minimize the number of virtual machine 
instances required in the auto-scaling queue while ensuring that response time is met. By 
optimizing the auto-scaling queue with SCORCH, the size of the queue can be reduced by 80% 
to two virtual machine instances. 

9.4.2 Power Consumption & Cost Comparison of Techniques 

The maximum load for the 6 month period occurred in November and required 54 virtual 
machine instances to support the increased demand, decreasing to 26 servers in December and 
finally 18 servers for the final four months. The monthly energy consumption and operational 
costs of applying each response time minimization technique can be seen in Figure 18(a) and 
Figure 18(b), respectively. Since the maximum demand of the e-commerce applications required 
54 virtual machine instances to function, the static provisioning technique consumed the most 
power and was the most expensive, with 54 virtual machine instances pre-booted at all times. 

 
(a) Monthly Power Consumption    (b) Monthly Cost 

Figure 18: Monthly Power Consumption and Cost 

The non-optimized auto-scaling queue only required ten pre-booted virtual machine instances 
and therefore reduced power consumption and cost. Applying SCORCH yielded the most energy 
efficient, lowest cost infrastructure by requiring only two virtual machine instances to be placed 
in the auto-scaling queue. Figure 19 compares the total power consumption and operating cost of 
applying each of the virtual machine provisioning techniques for a six month period. The non-

Approved for Public Release; Distribution Unlimited 
57



optimized auto-scaling queue and SCORCH techniques reduced the power requirements and 
price of utilizing an auto-scaling queue to maintain response time in comparison to the static 
provisioning technique.  

 
 

(a) Total Power Consumption   (b) Total Cost 
Figure 19: Savings in Power Consumption and Cost 

The figure compares the savings of using a non-optimized auto-scaling queue versus an auto-
scaling queue generated with SCORCH. While both techniques reduced cost by more than 35%, 
deriving an auto-scaling queue configuration with SCORCH yielded a 50% reduction of cost 
compared to utilizing the static provisioning technique. This result reduced costs by over 
$165,000 for supporting the e-commerce applications for 6 months. 

More importantly than reducing cost, however, applying SCORCH also estimates reduction in 
CO2 emissions by 50% as shown in Figure 20(a). According to recent studies, a power plant 
using pulverized coal as its power source emits 1.753 pounds of CO2 per each kilowatt hour of 
power produced [57]. Therefore, as shown in Figure 20(b), not using an auto-scaling queue 
results in an emission of 208.5 tons of CO2 per year. Applying the SCORCH optimized auto-
scaling queue, however, cuts emissions by 50% resulting in an emission reduction of 104.25 tons 
per year. 

 

 
(a) Power Consumption/Cost Percent Reduction   (b) CO2 Emissions 

Figure 20: Environmental Impact of SCORCH-based Deployment 

 

9.5 Concluding Remarks 

Auto-scaling cloud computing environments help minimize response time during periods of 
increased application demand, while reducing cost during periods of light demand. The time to 
boot and configure additional virtual machine instances to support applications during periods of 
high demand, however, can negatively impact response time. This report describes how the 
Smart Cloud Optimization of Resource Configuration Handling (SCORCH) MDE tool uses 
feature models to represent the configuration requirements of multiple software applications and 
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the power consumption/operational costs of utilizing different virtual machine configurations, 
transforms these representations into CSP problems and analyzes them to determine a set of 
virtual machine instances that maximizes auto-scaling queue hit rate. These virtual machine 
instances are then placed in an auto-scaling queue so that response time requirements are met 
while minimizing power consumption and operational cost. 

The following are lessons learned from using SCORCH to construct auto-scaling queues: 

 Auto-scaling queue optimization effects power consumption and operating cost. Using 
an optimized auto-scaling queue greatly reduces the total power consumption and operational 
cost compared to using a statically provisioned queue or non-optimized auto-scaling queue. 
SCORCH reduced power consumption and operating cost by 50% or better. 

 Dynamic pricing options should be investigated. Cloud infrastructures may change the 
price of procuring virtual machine instances based on current overall cloud demand at a 
given moment. Our future work is incorporating a monitoring system to allow SCORCH to 
take advantage of such price drops when appropriate. 

 Predictive load analysis should be integrated. The workload of a demand model can 
drastically effect the resource requirements of an application. In future work, SCORCH will 
take into account predictive load analysis to auto-scaling queues that cater to the workload 
characteristics of applications. 

SCORCH is part of the ASCENT Design Studio and is available in open-source format from 
code.google.com/p/ascent-design-studio. 

Future Work 

For the near term future we are also investigating issues and challenges in mobile cloud 
environments. One important topic we are investigating pertains to maximizing the uptime of 
mobile devices that provide critical services in a Cloud. We expect to present data in this regard 
in our subsequent report. 
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10. Deployment Optimizations for Mobile DoD Systems 

This section describes our effort which continues the theme of auto-scaling issues in cloud 
computing, however, with a focus on investigations on battery power concerns for smart phone-
based cloud computing environments. Such research is important for the US Air Force, which is 
increasingly adopting the use of new technologies including smart phones for national security. 

10.1 Mobile Devices in DoD Systems 

Current trends and challenges: The unprecedented growth in smart phone technology is giving 
rise to new applications that illustrate non-conventional usage of smart phones [65]. For 
example, these applications may include situational awareness in military-centric operations 
(e.g., the DARPA Transformative Apps program), emergency services, disaster search-and-
recovery, and intelligent transportation. Consider, for example, the natural disasters of 2010 like 
the Haiti earthquake or the massive flooding in the state of Tennessee. In both these situations, 
most of the infrastructure, such as the roads and phone services (both landline and cellular), and 
utilities, such as gas and electricity, were rendered unavailable. A number of instances of smart 
phone usage for survival have come to light in the days following the calamity. 

It is conceivable, therefore, to think of forming ad hoc networks of smart phones carried by 
search-and-rescue teams as the best means in these circumstances to identify survivors trapped 
under the debris or those trapped in their houses due to raging flood waters, and coordinate the 
rescue operations. To operationalize smart phone-based search-and-rescue missions, it is 
necessary for the collection of smart phones – a smart phone cloud -- involved in the mission to 
be able to support a group of real-time services that provide distributed sensing operations, data 
correlation capabilities stemming from acquisition of distributed streams of images, audio and 
video, and location-based services. 

However, since these smart phones have limited battery life and hardware resources, keeping the 
collective set of services that make up the mission capabilities up and running for the maximum 
amount of time is crucial for maximizing the chances of finding more survivors. Maximizing the 
mission lifespan is important because the smart phones operated by first responders are often 
deployed in environments where readily replenishing the resources, such as batteries, is 
infeasible. Despite these constraints, key quality of service (QoS) requirements of real-time and 
reliable dissemination of information to the concerned stakeholders, such as first responders in 
search-and-rescue missions, must be met. 

The requirements outlined above can be met by effectively deploying the services that make up 
the mission on the collection of smart phones involved in the mission. Here ad hoc network can 
be formed by smart phones which are self-configuring and self-organizing as no physical 
infrastructure is available for forming a centrally administered wireless network. Hence we are 
assuming that the appropriate ad hoc routing protocols like AODV [66], DYMO [67], etc. are 
available for routing of data to/from ad hoc network. Also, each node in the ad hoc network has 
equal probability of acting as hosts as well as routers to route data to/from other nodes in the 
network. The reason is that considerable battery power is consumed in routing data to/from the 
network to/from the outside network. Thus if a particular node has a higher probability of acting 
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as a router, then its battery power will be drained faster, which can render the entire distributed 
application nonoperational earlier than its maximized service uptime.  

Such a deployment problem is hard for two reasons. First, assuring the timely and reliable 
dissemination of information in operating environments where availability of resources, such as 
networks, is unpredictable requires deploying the individual services on the collection of smart 
phones in a way that will ensure the schedulability of the services while efficiently using the 
scarce resources. Secondly, the rate of drain of battery charge adds a new dimension of 
challenges to an already challenging problem because battery drain is often dictated by the 
amount of computation and communication activities. 

Solution approach → Service Uptime Maximization in Smart phone Clouds. In this research 
we focus on solving the service uptime maximization problem, which is the problem of ensuring 
that the operational capability of the mission provided by the collection of services deployed on 
the group of smart phones remains up and running for the maximum duration of time. In other 
words, it is necessary to minimize the rate at which the smart phone batteries drain themselves. 
Since every service (and its software components) of the mission consumes different 
computational and communication resources of the smart phone, battery drain is impacted 
differently. Hence, the service uptime maximization problem requires solving the deployment 
problem that minimizes battery drain (or preserves the battery charge) while also satisfying the 
QoS requirements. 

To address these challenges, we present a deployment framework called SmartDeploy, which 
extends the earlier work on ScatterD [47]. ScatterD combined binpacking heuristics with 
evolutionary algorithms [68] to minimize power consumption in nodes. It overcame the 
limitations of applying each of these algorithms in isolation. In particular, ScatterD provided a 
first-fit heuristic bin packer which places each item into the first available bin in which it will fit. 
In the case of maximizing service uptime, the software components of the services must be 
deployed in a way that minimizes battery drain on each smart phone. A first-fit heuristic may not 
necessarily find the right solution to our problem. 

Consequently, SmartDeploy provides a framework that can be strategized with the desired bin 
packing heuristic along with a strategizable framework to plug in the desired evolutionary 
algorithm so that a variant of the hybrid algorithm can be synthesized. To solve the service 
uptime maximization problem, SmartDeploy is strategized with the worst-fit bin packer which 
ensures that services are load balanced across the collection of smart phones used in the mission 
in a way that minimizes battery drain while also delivering the required QoS. The evolutionary 
algorithm generates initial random vectors and evaluates them using a fitness function. In this 
research we have limited ourselves to offline deployment of services assuming that the rescue 
missions and their parameters are planned a priori. The case of determining an effective 
deployment at runtime is orthogonal to the focus of this research and is the focus of future work, 
which will require additional runtime protocols involving message exchanges among 
participating smart phones. We believe that the polynomial runtime complexity of SmartDeploy 
can make it a promising approach even at runtime. 
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10.2 Challenges in Maximizing Smart phone Cloud Lifetime 

In this section we use an example of a video recognition service for disaster monitoring as a case 
study to highlight the challenges in maximizing the service uptime for smart phone-based 
distributed, real-time systems. Figure 21 shows an example of a distributed video recognition 
service used in disaster monitoring and recovery. The service comprises of different software 
components like video capturing (C1), segmentation (C2), feature extraction (C3), tracking (C4), 
activity analysis (C5) and information dissemination (C6). Each of these software component has 
different hardware resource requirements, such as memory and CPU, and different power 
consumption rates. For simplicity, we have shown one such distributed service (video 
recognition) consisting of six software components and four smart phones for disaster 
monitoring. Out of four smart phones used, two of them are Android-based HTC phones and the 
other two are iPhones. Software components C1, C4, and C5 can be executed only on Android-
based smart phones, while software components C2, C3, and C6 can be executed only on 
iPhones. In general, a disaster monitoring service can be composed of a combination of services 
such as distributed image recognition and distributed location-based services. Such a 
comprehensive service can consist of hundreds of software components deployed onto hundreds 
of smart phones. The deployment plan, which comprises a mapping of the software components 
of the services to the smart phones, should meet both the hardware resources constraints and 
power constraints such that the service can last for as much time as possible while also meeting 
the real-time application requirements.  

 
Figure 21: Smart phone Cloud Motivating Scenario 

Challenge 1: Dealing with complex hardware/software design constraints. In our case study 
example of the distributed video recognition service, its software components have different 
hardware and software resource requirements. For example, the video capturing component 
requires high memory and communicational power as it stores the captured video and sends it to 
the phone hosting feature extraction and segmentation components. The feature extraction and 
segmentation components require high CPU and computational power as they run complex 
algorithms based on extraction and segmentation on the video. The tracking and activity analysis 
components are involved in significant communication activities that consume battery power as 
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they constantly communicate with the phone hosting the information dissemination component. 
A disaster monitoring system comprises many distributed applications consisting of hundreds of 
smart phones and hundreds of software components hosted on them. How these software 
components are deployed on the devices will determine how long the overall mission will last, 
because the uptime of the mission depends on how long the batteries last.  

In general, network embedded devices like smart phones have limited battery power and limited 
hardware resources like CPU and memory. Moreover, the software components deployed on 
these devices consume power at different rates, which is governed by the computation and 
communication activities induced by the software components. The amount of time a software 
component runs is directly proportional to the amount of battery power available to it with 
sufficient hardware resources. Thus, the power consumption rate of these software components, 
and what devices they get deployed on are the key factors that affects the service uptime. Given 
that a mission is realized by distributing its services across a group of smart-phones, keeping the 
entire distributed application up for a longer duration is challenging because even if one of the 
smart phone’s battery is exhausted, then the software components deployed on it are no longer 
available which makes the overall distributed system no longer work.  

Thus, a deployment plan should be generated such that each of the software components gets 
maximum available power and sufficient hardware resources which will maximize the overall 
service uptime of the mission. In generating such a deployment plan, we must consider both the 
computational and communication power consumption rates of the software components.  

Challenge 2: Dealing with heterogeneity of available resources and execution constraints. 
Our case study example illustrates heterogeneity in the smart phone hardware and operating 
systems. It is conceivable that embedded devices such as smart phones used in mission-critical 
applications such as disaster search and rescue management have different available hardware 
resources like CPU type, available memory, and lifetime of battery. Due to this heterogeneity, 
certain software can execute on only certain devices. For example, smart phone apps developed 
for iPhones cannot execute on Android-based phones. As outlined in Challenge 1, the 
deployment topology of these mission-critical systems must address various design constraints 
like power capacity, memory, and CPU, which is a hard problem. The problem becomes even 
harder with the heterogeneity of the platforms and the software execution constraints. In the case 
study example, there are two Android-based HTC phones and the other two are iphones. 
Moreover, independent software components for video capturing, tracking and analysis can 
execute only on Android-based phones. Similarly, feature extraction, segmentation and 
information dissemination can execute only on iPhones. Such constraints affect the deployment 
plan which in turn affects maximizing service uptime.  

Challenge 3: Dealing with scale of the system. The case study example of distributed video 
recognition service is comprised of four devices hosting six software components which means 

there exist 6
4 

possible deployment plans (if there are no restrictions). Several optimization 
techniques are available to solve the deployment challenges explored in Challenges 1 and 2 
described above. The solutions can be characterized and solved using constraint satisfaction pro-
gramming (CSPs) [69], integer programming [70] and Bender’s decomposition [71]. Although 
our case study represents a very small problem size which can be solved by bin-packing 
heuristics, integer programming or evolutionary algorithms, typical mission critical applications 
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will comprise several hundreds of devices and many more software components. Thus, when the 

problem size scales to 300
100 

or even more, and moreover, considering additional hardware and 
software design constraints, as outlined in Challenges 1 and 2, many of the known techniques 
cannot readily scale to hundreds of software components and hundreds of devices. In other 
words, the solutions are computationally very expensive to obtain.  

Bin packing heuristics have been developed to overcome these challenges to produce valid 
deployment plans; however, these plans do not necessarily produce the optimal solutions for 
large problem sizes. Evolutionary algorithms are commonly used in deployment optimization 
problems. However their performance degrades when the solution space is huge and has tight 
constraints that lead to a large number of invalid points in the search space.  

10.3 The SmartDeploy Architecture 

To address the challenges described in Section 10.2, we use a hybrid algorithm that integrates 
bin packing heuristics with evolutionary algorithms (e.g., particle swarm optimization PSO [40] 
and genetic algorithms [72]) so that we can reap the benefits of both while overcoming the 
limitations of individual techniques. Moreover, rather than fixing a specific heuristic or an 
evolutionary algorithm, we provide a framework that enables a deployment planner to strategize 
the framework with the desired techniques. The advantage of using bin-packing heuristics is that 
they produce a valid deployment topology while the advantage of using evolutionary algorithms 
is that they explore multiple solutions in the design space.  

Here we show the architecture of SmartDeploy, which is a strategizable framework for deploy-
ment planning that addresses the three challenges described in Section 10.2. The SmartDeploy 
framework is applied to solve the Service Uptime Maximization problem. Figure 22 shows the 
SmartDeploy framework combining the worst-bin packer and PSO algorithm. It shows a generic 
interface to encode objective functions and constraints, and the hybrid algorithm to solve design-
time constraint optimization problems. The algorithm for combining the worst-fit bin packer and 
genetic algorithm is also similar. The white colored blocks show the newly added features by 
SmartDeploy, blue colored blocks show the integration between original and new features and 
the grey colored blocks show the original features of ScatterD.  
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Figure 22: SmartDeploy Architecture 

10.4 Empirical Results using SmartDeploy 

We compared the deployments produced by five different deployment techniques. The five 
techniques we compared are:  

 Worst-fit bin packing -A worst-fit heuristic of bin-packing algorithm.  

 Particle Swarm Optimization (PSO) - Only PSO algorithm from SmartDeploy framework.  

 SmartDeploy PSO -The PSO variant of SmartDeploy which combines worst-fit bin-packer 
with PSO algorithm.  

 Genetic - Only Genetic algorithm algorithm from SmartDeploy framework.  

 SmartDeploy Genetic -The genetic variant of SmartDeploy which combines worst-fit bin-
packer with genetic algorithm.  

The experiments were conducted on a single Windows XP desktop with 2.19 GHz Intel Core 2 
Duo processor and 2 GB RAM. Java Virtual Machine (JVM) version 1.6 was used for the 
experiments. For both PSO and genetic algorithm, a population size of 20, local learning 
coefficient of 0.5, global learning coefficient of 2, and 20 search iterations (generations) were 
used. The genetic algorithm allowed a total of 10% of the population to be passed through to the 
next generation, selected the top 25% of solutions for mating, and applied a mutation probability 
of 5%. A uniform distribution for generating initial random vectors is used to cover more area 
and not inadvertently bias our search to a specific region. Experiments 1 and 2 described below 
were conducted using 100 nodes and 100 software components. The number of nodes tested for 
the experiment ranges from 30 to 100. The number of software components is kept constant.  
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10.4.1 Experiment 1: Homogeneous nodes, heterogeneous software components 

The first experiment was conducted using homogeneous nodes.  That is, each node has the same 
amount of memory and power capacity. The software components deployed on the nodes were 
heterogeneous (each component required a different amount of memory and power consumption 
capacity). Here, constraints were placed on the amount of memory available on all nodes and the 
amount of memory required by all software components, such that total hardware and software 
resource requirements should not exceed total availability.  

We hypothesize that SmartDeploy should provide a significant increase in service uptime 
compared to the bin-packing algorithm and PSO. Here, although the nodes have homogeneous 
properties for the amount of memory and the battery power capacity, the heterogeneous 
properties of the software components i.e., each of them requiring different amount of memory 
and power consumption capacity causes SmartDeploy to produce better results than the worst-fit 
bin packer and evolutionary algorithms alone.  

Service uptime is plotted against the number of homogeneous nodes in Figure 23.  The 
SmartDeploy algorithms provide 94% and 58% improvement in maximizing service uptime over 
PSO and genetic algorithms, respectively. However, it gives only 20% improvement over worst-
fit bin packer. Due to the homogeneous properties of the nodes, the worst-first bin packer gives 
better results as compared to both of the evolutionary algorithms, and are close to that of 
SmartDeploy.  

 
Figure 23: Homogeneous Nodes, Heterogeneous Components 

 
10.4.2 Experiment 2: Heterogeneous nodes (but same OS), heterogeneous software 

components 

The second experiment was conducted using heterogeneous nodes.  That is, half the number of 
nodes have one set of properties while the other half has another set of similar properties. For 
lack of space we do not report on other variations. The software components deployed on the 
heterogeneous nodes were also heterogeneous - each  component required a different amount of 
memory and power consumption capacity. Constraints were placed on the amount of memory 
available on all nodes and the amount of memory required by all the software components, such 
that total hardware and software resource requirements would not exceed total availability.  
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We surmise that SmartDeploy should provide significant improvement in service uptime com-
pared to the bin-packing algorithm and evolutionary algorithms. Nodes having heterogeneous 
properties for the amount of memory and battery power capacity, and having heterogeneous 
properties for the software components (each component requiring a different amount of memory 
and power consumption capacity), should cause the SmartDeploy algorithms to produce better 
results than the worst-fit bin packer and evolutionary algorithms alone.  

As seen in Figure 24, due to the heterogeneous properties of nodes and software components, 
and large problem size, the performance of evolutionary algorithms degrades. PSO gives invalid 
topologies in this scenario. Genetic algorithm gives invalid topologies when software 
components are tightly packed onto devices. Even when the number of devices increases, 
SmartDeploy algorithms provide up to 162% better service uptime. They also provide up to 75% 
more service uptime than worst-fit bin packer.  

 

 
Figure 24: Heterogeneous Nodes, Heterogeneous Components 

10.4.3 Experiment 3: Varying the number of software components (heterogeneous) deployed 
on fixed number of heterogeneous nodes 

The third experiment was conducted by varying the number of heterogeneous software 
components being deployed on fixed number of heterogeneous nodes. The number of software 
components varied from 100 to 200 with increments of 20. Constraints were placed on the 
amount of memory available on all nodes and the amount of memory required by all the software 
components, such that the total hardware and software resource requirements do not exceed their 
total availability.  

Our hypothesis is that as the number of software components increases, the topologies become 
tightly constrained. If the solution space increases, then it should cause the bin-packer to provide 
a less than optimal value. The tightly constrained solution space should cause evolutionary 
algorithms to degrade in their performance. As seen in Figure 25 the devices become tightly 
packed with increasing number of software components and constraint on memory requirements. 
The evolutionary algorithms degrade in performance and give invalid deployment topologies. 
The SmartDeploy algorithms give up to 50% more service uptime as compared to worst-fit bin 
packer.  
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Figure 25: Varying the Number of Heterogeneous Software Components 

10.4.4 Experiment 4: Heterogeneous nodes (including different OS) and heterogeneous 
software components 

The fourth experiment was conducted using heterogeneous nodes, such that 30% of nodes had 
one set of properties while 70% of nodes had another set of similar properties. Also, a different 
OS (Android-based and iPhone) was used for each set. The software components deployed on 
them were also heterogeneous.  Each component required different memory, power consumption 
capacity, and execution platform (OS). Constraints were placed on the execution platform (OS), 
amount of memory available on all nodes, and the amount of memory required by all software 
components, such that total hardware and software resource requirements would not exceed total 
availability.  

Our hypothesis is that SmartDeploy should provide significant improvement in service uptime 
compared to the bin-packing algorithm and evolutionary algorithms. Here the nodes having 
heterogeneous properties for the amount of memory, the battery power capacity and execution 
platform (OS), the heterogeneous properties for the software components, i.e., each of them 
requiring different amount of memory and power consumption capacity and execution platform 
(OS) should cause the SmartDeploy algorithms to produce better results than the worst-fit bin 
packer and evolutionary algorithms alone. 

Figure 26 displays service uptime as a function of the number of heterogeneous nodes. The 
performance of evolutionary algorithms degrades due to the heterogeneous properties of nodes 
and software components, and large problem size. PSO gives invalid topologies in this scenario. 
A genetic algorithm gives invalid topologies when software components are tightly packed onto 
devices. SmartDeploy algorithms give higher service uptime than bin-packer and the 
evolutionary algorithms.  
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Figure 26: Heterogeneous Nodes (Different OS), Heterogeneous Components 

 
10.4.5 Experiment 5: Comparison of service uptime by all the algorithms with that of brute-

force algorithm 

We attempted to obtain the optimum service uptime using a brute-force algorithm which tries 
each and every combination of deployment topologies. However, we observed that running the 
brute-force algorithm even for even small problem sizes takes significant time. So it was not 
practical to run it for large problem sizes of hundreds of nodes and hundreds of software 
components. Table 1 shows the running time for the brute-force algorithm over a small problem 
size. 

 

10.4.6 Experiment 6: Comparison of computation time taken by each of five algorithms to 
execute 

The sixth experiment was conducted to observe the average time taken by each of the five 
algorithms to execute. Here the experimental values used in Experiment 2 were used regarding 
heterogeneous nodes and heterogeneous software components. The average values for service 
uptime for the entire range of nodes were recorded. As seen in Figure 27, worst-fit bin packer 
takes least amount of time to run (47 milliseconds). The SmartDeploy algorithms take the most 
amount of time to run, between 2,000 milliseconds to 3,200 milliseconds. Since we are 
considering an offline solution for deployment topology, a delay of a few seconds is tolerable to 
achieve better service uptime. Hence the use of SmartDeploy algorithms is desirable in such 
situations. 

Nodes  Software components Service uptime(msec) 
5  5  78  
5  7  1219(1.2 secs)  
5  9  33312(33.3 secs)  
5  11  1261211(21 minutes) 
   

Table 1: Time taken to run Brute-force algorithm for service uptime 
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Figure 27: Time Taken by Each Algorithm to Execute 

10.5 Concluding Remarks 

Service uptime maximization in distributed applications hosted on a network of smart-phones 
can be achieved through effective deployment. Several optimization techniques are commonly 
used for deployment problems in distributed real-time and embedded systems. Algorithms with 
exponential runtime complexity like integer programming are not scalable when the problem size 
increases up to hundreds of devices. Bin-packing heuristics tend to generate valid deployment 
topologies, but they may not give optimal solutions when problem size increases. Evolutionary 
algorithms are commonly used for deployment problems since they explore a variety of design 
solutions. However, as the number of constraints and the problem size increases, they tend to 
degrade in performance and returned invalid results.  

This section describes a framework called SmartDeploy that provides a hybrid deployment 
technique to achieve service uptime maximization. It builds upon the earlier work, called 
ScatterD, which combines first-fit bin packer with the evolutionary algorithm to reduce power 
consumption in DRE systems. SmartDeploy enables a user to strategize both the evolutionary 
algorithm as well as the bin packing heuristic. A concrete manifestation of SmartDeploy using 
the worst-case bin packer along with evolutionary algorithms is presented to solve the service 
uptime maximization problem for smart phone-based mission critical applications.  

Using worst-fit bin packer heuristic, the software components of the distributed application can 
be evenly deployed on the available devices such that they can obtain maximum available battery 
power and sufficient hardware resources. The experimental results show that SmartDeploy 
framework increased service uptime from 20% to 162% beyond that provided by worst-fit bin 
packer and evolutionary algorithms when used independently. The following lessons were 
learned conducting this research:  

Since the running time of the SmartDeploy algorithms is only slightly more than the algorithms 
we compared against, it is practical to use the hybrid algorithm. In future work we intend to 
investigate the use of the SmartDeploy framework in runtime deployment decisions. We also 
intend to investigate other distribution techniques for the generation of initial random topologies 
of evolutionary algorithms like Gaussian distribution to see if they can achieve better solutions.  
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We intended to run the brute-force optimal algorithm to compare the service uptime solutions 
from each of the five algorithms we used in our experiments to see how our solutions compare to 
the optimal one. However, we observed that running the brute-force algorithm, even for small 
problem sizes, takes considerable amount of time. Hence it was not practical to test it out for the 
large problem size that we use.  
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11. Dynamic Resource Management for Cloud Computing-based 
DoD Systems 

Our effort continued the theme on the auto-scaling issues in cloud computing with a focus on 
investigations into balancing the costs of acquiring and releasing machines, and their 
reconfigurations. An additional dimension of our research focused on deployment and 
configuration of distributed systems, which can also handle deployment in the cloud – which can 
be a tactical cloud, used in US Air Force operations.  

11.1 Introduction 

Large enterprise software systems such as eBay, Priceline, Amazon and Facebook need to 
provide high assurance in terms of Quality of Service (QoS) metrics such as response times, high 
throughput, and service availability to their users. Without such assurances, service providers of 
these applications stand to lose their user base, and hence their revenues. Typically customers 
maintain Service Level Agreements (SLAs) with service providers for the QoS properties. 
Failure to comply with satisfying these QoS metrics leads to a major loss of revenue in the form 
of decreased user base [73]. Similar requirements exist in the context of DoD applications, where 
the QoS requirements become even more stringent, and instead of revenues the DoD is 
concerned with cost-effective solutions. In the rest of the section we will use enterprise 
applications to drive home our point and the defined solutions.  

Catering to the SLA while still keeping costs low is challenging for such enterprise systems due 
primarily to the varying number of incoming customers to the system. For example, consider 
Figure 28 which depicts a real-world scenario wherein workload of the FIFA 1998 soccer world 
cup website in the number of incoming clients to such a website is highly varying depending 
upon a number of factors such as time of day, day of week and other seasonal factors.  

 
Figure 28: Workload for the 1998 FIFA Soccer World Cup 

Such a workload is very typical of all commercial websites, and planning capacity for such 
workload is not easy. Capacity could be planned for the average load or for peak load. When 
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planned for the average load, there is less cost incurred due to less hardware used but 
performance will be a problem when peak load occurs. Bad performance will discourage 
customers and revenue will be affected. On the other hand if capacity is planned for peak 
workload, resources will remain idle most of the time. 

Auto-scaling supported in cloud computing environments overcomes these challenges. Cloud 
computing providers such as Amazon EC2 provide access to hardware which can be allocated or 
deallocated at any time. Images of client software can be created beforehand which can be 
loaded onto the machine. When not required, the same machines can be released. Machine usage 
costs on an hourly basis. Amazon EC2 provides an API which can be used to automate this 
process. A problem with such a resource allocation scheme is the chance of thrashing where due 
to frequent variation of workload, machines can be added and released on every sample. 

A desirable solution would require an ability to predict the incoming workload on the system and 
allocate resources a priori. This capability in turn will enable the application to be ready to 
handle the load increase when it actually occurs. A corollary requirement is the need to identify 
how many machines should actually be provisioned and started to handle the predicted load. For 
example, consider a situation where there is N number of machines already running and handling 
M customers for a given application. Suddenly, the number of customers increases to M + 100 
and processor utilization also increases in the running nodes. Naturally, this situation requires 
increasing the number of machines allocated, but by how much is unknown. Anything less will 
provide degraded performance; anything more implies cost incurred by the customer for 
resources not actually used by the application.  

In summary, auto-scaling the resources in a cloud environment is not an easy and straightforward 
task. Overcoming these challenges will require algorithms which take into account the following: 
(i) overheads related to state transition when number of resources are changed, (ii) ability to 
accurately predict future workload, and (iii) compute the right number of resources required for 
the expected increase or decrease in workload. This report describes a resource allocation 
algorithm based on model predictive techniques which allocates or deallocates machines to the 
application based upon optimizing the utility of the application over a limited prediction horizon. 

11.2 Challenges to Elastic Resource Provisioning in Cloud Environments  

This section discusses the challenges to realizing elastic resource provisioning in large-scale 
component-based systems. Many of the challenges that are faced in elastic resource provisioning 
using auto-scaling can be highlighted from the workload pattern in Figure 28. In DoD scenarios, 
due to the fluctuating availability of resources, it becomes important to support an elastic 
resource provisioning capability so that mission-critical applications can continue to execute in a 
cost effective manner. 

 

11.2.1 Challenge 1: Workload Forecasting  

The auto-scaling strategy in a cloud environment will involve acquiring and release of resources 
as the workload imposed by the application changes with time. Releasing resources is easy, 

Approved for Public Release; Distribution Unlimited 
73



however, acquiring resources incurs performance overheads due to the following reasons. First, 
there is a need to make a call on the cloud API which starts the acquisition process. The 
machines will then need to boot up with the specified image, the application(s) needs to be 
started, and there also might be the need for state update. Thus, it is desirable if the resources can 
be acquired earlier than the time when workload actually increases. This outcome can be 
possible only if the future workload can be predicted, possibly using historical data.  

11.2.2 Challenge 2: Identify Resource Requirement for Incoming Load  

Figure 28 plots the number of customers who use the system every hour. Since the number of 
customers varies every hour, the number of resources required also varies. The required number 
of resources is a function of the number of customers, the nature of the application, and also the 
type of calls that each customer makes on the application. The resources required need to be 
estimated properly so that they can be provisioned within the cloud infrastructure. The resource 
estimation also needs to be very accurate. If it is not accurate then there is the potential of under-
or over-provisioning of resources, each of which has its pitfalls.  

11.2.3 Challenge 3: Resource Allocation while Optimizing Multiple Cost Factors  

To optimize resource usage and/or minimize idle resources, an ideal solution is to define a time 
interval and change resources as many times as possible as workload changes. In the limit this 
interval could be made infinitesimally small and resources are changed continuously in 
accordance with the change in load, assuming we can always at least over estimate the load. This 
extreme will obviously ensure that the optimum number of resources is always used. Obviously, 
such a scheme is not possible since changing resources is not spontaneous. Challenge 1 
highlights the overhead in allocating a resource. Thus, scaling resources up or down also 
involves cost and needs to be optimized.  

11.3 Auto-Scaling Resources Using Look-Ahead Optimizations 

Control theory offers a promising methodology to address the challenges described in Section 
11.2. It allows systematically solving a general class of dynamic resource provisioning problems 
using the same basic control concepts, and to verify the feasibility of a control scheme before 
deployment on the actual system. In more complex control problems a pre-specified plan called 
the feedback map becomes inflexible and does not adapt well to constantly changing operating 
conditions. Therefore, researchers have studied the use of more advanced state-space methods 
adapted from model predictive control [74] and limited look-ahead supervisory control [75] to 
manage such applications [76–78]. These methods offer a natural framework to accommodate 
the above described system characteristics, and take into account multi-objective non-linear cost 
functions, finite control input sets and dynamic operating constraints while optimizing 
application performance. The autonomic approach proposed in [78], [79] describes a hierarchical 
control based framework to manage the high level goals for a distributed computing system by 
continuous observation of the underlying system performance. The key differences between 
these previous works and our work are in the nature of the performance models. 

The auto-scaling algorithm presented in this report does not use a reactive strategy. Instead it 
provides a predictive solution leveraging concepts proposed by Sherif, et. al.[80], [81], which is 
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applicable to systems that exhibit a hybrid behavior comprising both discrete-event and 
continuous dynamics and have a possibly large but finite set of control options. Formally, it has 
been shown before in the literature that dynamics of such systems can be captured using the 
model of switching hybrid systems. It is known that for such systems a multi objective control 
problem can be solved by using a limited look-ahead controller algorithm [80], [81], which is a 
type of model predictive control. This is done by selecting actions that optimize system behavior 
over a limited prediction horizon. The rest of this section describes our approach and shows how 
we resolve the three challenges described in Section 11.2. 

11.3.1 Workload Prediction  

To apply model predictive control ideas to the problem discussed, we predict the workload on 
the application and estimate the system behavior over the prediction horizon using a performance 
model. The optimization of the system behavior is carried on by minimizing the cost incurred to 
the application. This cost is a combination of various factors such as cost of SLA violations, 
leasing cost of resources and a cost associated with the changes to the configuration. The 
advantage of such a method is that it can be applied to various performance management 
problems from systems with simple linear dynamics to complex ones. The performance model 
can also be varied and corrected with system dynamics as conditions in the environment like 
workload variation or faults in the system change.  

In our strategy, workload prediction is needed to estimate the incoming workload of the system 
for future time periods. Thankfully a number of techniques already exist in literature that can be 
applied for forecasting the traffic incident on a service. We used a second order autoregressive 
moving average method (ARMA) filter for the workload shown in Figure 28. The equation for 
the filter used is given by  

λ(t +1) = β × λ(t)+ γ × λ(t − 1) + (1 − (β + γ))(λ(t − 2))      (1)  

The value for the variables β and γ are given by the values 0.8 and 0.15, respectively. Figure 29 
shows the predicted workload compared to the actual workload. 

 
 

 
Figure 29: Predicted versus Actual Workload 
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11.3.2 Performance Model  

The next challenge we resolve is identifying resource requirements for the predicted workload. 
The right number of resources will provide the desired response times (or other performance 
metrics) of the applications. For the above look-ahead framework we focus on response times of 
the application under different hardware configurations. The workload used in this work is the 
number of users currently in the system. It also depends upon what each user executes on the 
system. For example, some users could be browsing while some users could be entering data in a 
form. In our prior work [82] we have used Customer Behavior Modeling Graphs (CBMG) to 
model the overall behavior of customers. A CBMG is built from a log of previous customer 
behavior and computes the probability of a typical user to visit each page. Using this 
information, we can calculate the number of visits to a single page from the total number of 
customers in the system. The number of visits to each page helps in calculating the average load 
on each page. 

Our prior work also developed analytical models to accurately estimate response times, which 
are used in Algorithm 1. This algorithm accepts the amount of workload given by a vector of 
client populations, each member representing the number of clients in each job class. The 
number of machines providing the service demand of the components and the think time for 
clients is also given as input. Algorithm 1 initially creates a default placement strategy whereby 
it places each tier of the application onto a particular machine. Purposefully we start off with a 
low number of machines (2) and gradually increase the load to identify the right number of 
resources required. This approach helps to avoid a situation where we need to reduce the number 
of machines (M − 1) on each iteration.  The algorithm makes a call onto the Mean Value 
Analysis (MVA) algorithm. The MVA returns the utilization of each tier which can be used to 
find the bottleneck machine (the machine with the highest utilization). The tier present in that 
machine is then replicated and placed in a new machine which is introduced in that iteration. In 
this manner, the iteration continues until the total number of machines equal the given maximum 
machines. 

Algorithm 1: Response Time Analysis (RTA) 
Input:  Ld, Predicted Workload 

Hw, Total Machines available 
SD, Service Demand for the job classes 
Z, Think Time 

Output: 
Response Time R Vector of response times for all job classes 
 

1 begin 
2  // start with one machine per tier (2 in this case) 
3  M = 2; 
4  while M <= Hw do 
5 // Get response time and server utilization by running MVA on 

// analytical model presented in [20] 
6   [R, U] = MVA (SD, Ld, Z); 
7   i = maxUtil (U); // Get the index of the bottleneck tier 
8   // Add a machine and replicate tier i on it to balance the load 
9   M = M + 1 
10   M = i 
11  done 
12 end 
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11.3.3 Optimizing Resource Provisioning  

To optimize resource usage and minimize idle resources, the best way would be to define a time 
interval and change resources as many times as possible as workload changes. In the limit this 
interval could be made infinitesimally small and resources changed continuously, however, as 
noted earlier such an extreme solution is not feasible. The intuition therefore is to identify the 
right number of time intervals in which to make these adjustments with the requirement that the 
time interval is neither too small nor too large. Our solution works on the principle of receding 
horizon control also known as look-ahead optimization [81].  

This form of controller iteratively solves an optimization problem, Cost
opt 

starting from t0, over a 
predefined horizon (t = 1...N) taking into account current and future constraints. Once a feasible 
sequence is found, only the first input in the sequence is applied and the rest are discarded. 
Effectively, the optimization search results in the construction of a tree with branching factor K 
and N + 1 levels. Here K is the total number of finite input choices. Formally, at time t0, given 
state xt0 

Cost
opt 

= min {Cost({xt}, {ut})} where {} denotes a set  

  , , 	 …	  

ut ∈ U finite input choices 

XN is the set of final goal states  

	 , , , 	 	 	 	 	  

 

Sequences {ut} = {u0, ··· ,uN−1} and{xt} = {x0, ··· ,xN−1} are the feasible input sequence and the 
resulting states that trace a path from the root to the lead node in this search tree such that the net 
cost across the sum of all branches is minimum and the leaf node is closest to the final 
destination state. Given that this method needs finite input choices, we use a finite range of 
machines that can be increased, decreased, or kept the same. The next challenge is the choice of 
the look-ahead period. A small look-ahead period will neglect trends, while a very large period 
will increase computational complexity and lead to a larger prediction error, which will yield any 
control decision ineffective. Thus, the number of look-ahead periods needs to balance out the 
different tradeoffs. 

Our algorithm uses the receding horizon control and iterates over the number of look-ahead steps 
and calculates the cumulative costs. For every future time step, it computes the cost of selecting 
each possible resource allocation. To compute the cost of a particular allocation, it uses 
Algorithm 1 to compute the estimated response time for that particular machine configuration. 
Once the response time is calculated, it is used to calculate the cost of the allocation which is a 
combination of how far the estimated response time is from the SLA bounds, cost of leasing 
additional machines and also a cost of re-configuration. 
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Wt = β × Wt−1 + γ × Wt−2 + (1 − β − γ) × Wt−3          (2)  
Mt = Mt−1 + ut                  (3)  
Rt = ResponseTimeAnalysis (Wt, Mt, SD, Z)          (4) 
 

The cost of reconfiguration is computed based on the number of machines that need to be 
updated. Obviously re-configuration will incur some costs and thus the algorithm will try to 
reduce the amount of reconfiguration. Each of these cost components will have weights attached 
to them which may be varied depending on the type of application and its requirements. 
Applications are required to specify which factors are more important to them, and our auto-
scaling algorithm will honor these specifications in making the decisions.  

11.4 Experimental Evaluation 

This section presents a subset of results evaluating our look-ahead algorithm for auto-scaling in 
cloud environments [83]. We first show how the algorithm determines the number of resources 
to be allocated in a just-in-time manner so that the overall cost is minimized. Next, the effects of 
different cost weightings are studied.

 
This study is important since different applications may 

impose different weighting combinations. The data used in this study is acquired from the 1998 
soccer world cup web site shown in Figure 28. We use the number of customers visiting that site 
as an indication of the amount of workload that typically can be experienced by such a globally 
popular topic. 

11.4.1 Just-in-time Resource Allocation 

To evaluate the strength of our just-in-time resource allocation, we have used a cost function 
shown in Equation 5 comprising three components. Recall that the three components of the cost 
function refer individually to the penalty for violation of SLA bounds, cost of leasing a machine, 
and cost of reconfiguring the application when machines are either leased or released. Each of 
these components has a weight attached to it and the system can be made to always minimize a 
certain component by increasing the attached weight to it to an arbitrary high value. Table 2 
describes the components of the cost function. 

 
Cost = Wr × (Rsla − R) + Wc × Mk + Wf × (Mk − Mk−1)       (5)  

 

Component  Description  Unit 

Wr  Penalty for SLA violation  $/sec 

Wc  Cost of leasing a machine per hour  $/machine 

Wf  Cost of reconfiguration  $/machine 

Rsla  SLA for the observed response time  sec 

R  Maximum response time for an application  sec 

Mk  Number of machines used in the kth interval  Numeric 

Mk‐1  Number of machines used in the (k‐1)th interval  Numeric 
Table 2: Components of the Cost Equation 
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For this experiment, the weights on each component of the cost function are the same, which 
means all factors are equally important. Figure 30 shows how the look-ahead algorithm 
determines changes in the resources required as the incoming load changes. The computation is 
done on the basis of predicted workload which is done with the help of the ARMA filter given in 
Equation 1. Figure 30 clearly shows that the base resources required are 2 machines and it 
increases to 3 or 4 when the load is increased. The prediction of the look-ahead algorithm based 
on a selected number of time intervals closely matches the incoming load. It prescribes a 
resource increase whenever there is high load and fewer resources when there is a lower load. 
Thus Figure 30 shows the effectiveness of the look-ahead algorithm and how it can save cost 
while also assuring that the performance of the application is assured. 

 

 
Figure 30: Just-in-time Resource Allocation with Changing Load 

11.4.2 Resource Usage under Different Cost Priorities 

The results in this section demonstrate the allocation/deallocation of resources stemming from 
using different cost ratios among the three competing factors in the cost function of Equation 5. 
The resource allocation determined by our algorithm in the different time intervals will depend 
upon the weights assigned to the various components of the cost function. The rest of the section 
studies the different trends of resource allocation and how they are influenced by the varying 
weights of the cost function. 

SLA violation against Resource Cost: We first show the results when considering the effect of 
SLA violation against cost of resources.  The ratio of the cost of SLA violation against the cost 
of machines is varied while the application reconfiguration cost is assumed to be zero. We 
assume that the application can be easily reconfigured with varying machines. The ratio of SLA 
penalty to machine cost is varied from 4:1 (which means SLA violation is higher priority than 
cost of the machine) to 1:13 (which means that the machine cost is higher priority than SLA 
violation).  

Figure 31 shows how the resources are allocated every hour over the entire time period. The 
corresponding cost values are also shown in the bottom graph for each of these figures. The 
intervals over which there is SLA violations are also shown. The algorithm always tries to keep 
the cost to a minimum. It is seen that there is significant difference in resource allocation 
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between the different configurations. An application with high SLA violation penalty has 
stronger performance assurance whereas one with low SLA penalty has lesser performance 
assurance. The priorities of the application determine the difference in resource allocation. For a 
low performance assurance and high machine cost, the number of machines used is only two 
over the entire time interval. The cost of machines exceeds the cost of SLA violations and such a 
configuration will have to tolerate a number of SLA violations 

 
Figure 31: Resource Allocation for Low SLA Violation Cost and High Machine Cost (1:13:0) 

 

On the contrary, Figure 32 shows how the algorithm supports an application with a high SLA 
violation cost. For the highly assured application of Figure 32, there is much variation in 
resource usages with a number of intervals having 3 machines and also some having 4 machines. 
Here the priority is in assuring performance and the cost of machines is much lower. 

Finally, Figure 33 shows the distribution of the number of machines required for a variety of 
systems ranging from highly assured systems (ratio of SLA violation penalty to machine cost 
being 4 : 1) to very weakly assured systems (ratio of SLA violation penalty to machine cost 
being greater than 1 : 13). In this figure, each point on the X-axis is a ratio of the cost of an SLA 
violation to the cost of a machine. The Y-axis plots the number of intervals in which each type of 
machine is used. For example, for the point corresponding to cost ratio of 1:4, 359 intervals use 2 
machines and the other 143 intervals use 3 machines. The ratio of SLA violation cost-to-machine 
cost increases as we move further down the X-axis. The figure shows more the use of 3 machines 
than 2 machines as we move to the right. This outcome is because the relative cost of machines 
decreases to the right and the penalty of SLA violation increases. 
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Figure 32: Resource Allocation for High SLA Violation Cost (1:4:0) 

 

Figure 33: Resource Allocation for Variety of Systems 

Including the Cost of Reconfiguration: Figure 32 showed how resource allocation is done 
when there is high SLA violation cost compared to machine cost. For this configuration, in every 
interval, the mean response time is below the SLA bound and the machines are allocated 
whenever they are needed. A machine is released again since there is cost of machine but only 
making sure that the SLA is maintained. When there is a cost of reconfiguration introduced, the 
algorithm will resist the changing of resources. This phenomenon can be related to inertia in 
physical bodies. Inertia resists changes to its current physical condition such as a body in rest 
resists movement while a body in motion resists slowing down. Thus, the cost of reconfiguration 
will similarly resist the dynamic nature of resource allocation. 

The higher the cost, the higher will be its resistance to the changes. This cost is expressed as the 
third component of Equation 5. The weight Wf represents the level of inertia and it is multiplied 
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by the change level which is the number of machines allocated or released. Initially when a small 
amount of reconfiguration cost is introduced, it does not affect much as shown in Figure 35. The 
resource allocation is similar to Figure 32. There are small deviations, where the spikes in 
resource changes are a little wider in Figure 34 than in Figure 32. This is due to the inertia in 
change introduced due to some cost associated with change. 

 

Figure 34: High SLA Violation with Low Reconfiguration Cost 

The effect of the cost of reconfiguration is more pronounced when it is prioritized slightly 
higher. Figure 35 shows a distinct change in resource allocation over the hourly intervals 
compared to Figure 32 or Figure 34. In Figure 35, the number of machines increases to 3 around 
the 40th hour and remains steady. Somewhere around the 350th hour it increases to 4 machines 
since the workload increased at that time. Subsequent to that, the workload decreased but the 
machines were never released since the cost of reconfiguration is considered much higher 
compared to the cost of machines. The changes of the machines around 40 and 350 hours was 
warranted because of the high SLA violation cost and the machines were never released even 
though the workload lessened since the cost of reconfiguration was higher. 
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Figure 35: High SLA Violation with Medium Reconfiguration Cost 

This behavior of resisting change is further pronounced in Figure 36 where there is even higher 
cost of reconfiguration. Here again there is an increase of machines to 3 at around the 40 hour 
mark and the machine is never released. The change to 4 machines which was seen in Figure 35 
does not occur here because the cost of reconfiguration is much higher than the cost of SLA 
violation. Thus even though there is SLA violation, it is only of a short duration (the peak 
workload around 350 hours) and is of lesser cost than the cost of changing resources. That the 
SLA violation near 300 hours was of a short duration can be understood from Figure 34 where 
there is a very short spike of machine allocation to 4 around that time. When the cost of 
reconfiguration becomes high, the look-ahead algorithm decides not to expend the extra cost of 
reconfiguration to cover up that short SLA violation. 

 

Figure 36: High SLA Violation with High Reconfiguration Cost 

11.5 Concluding Remarks 

Auto-scaling of resources helps cloud service providers operating modern day data centers to 
support a maximal number of customers while assuring customer QoS requirements in 
accordance with service level agreements, and keeping cost of using resources low for 
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customers. However, current auto-scaling mechanisms require user input and programming of 
APIs to adjust resources as workloads change. Reactive scaling of resources imposes 
performance overheads while also making the programming of the cloud infrastructure tedious. 
To address these problems, this report describes a look-ahead resource allocation algorithm 
based on model-predictive control which predicts future workload based on a limited horizon 
and adjusts resources allocated to users ahead-of-time. Empirical results evaluating our approach 
show significant benefits both to cloud users and providers. The work presented demonstrates the 
feasibility of our approach in the context of the small number of machines used. Our future work 
will explore the scalability of our algorithms in the context of modern day workloads and large 
numbers of resources, which are typical of contemporary applications. 
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12. Runtime Infrastructure for Deployment and Configuration  

This section focuses on the runtime infrastructure that enables the deployment and validation of 
DoD system artifacts in the runtime execution environment. Predictable performance of these 
capabilities is important for assuring QoS properties of DoD systems. 

12.1 Introduction 

Component-based middleware, such as the Lightweight CORBA Component Model, are 
increasingly used to implement large-scale distributed, real-time and embedded (DRE) systems. 
In addition to supporting the quality of service (QoS) requirements of individual DRE systems, 
component technologies must also support bounded latencies when effecting deployment 
changes to DRE systems in response to changing environmental conditions and operational 
requirements.  

Component-based software engineering techniques are increasingly applied to develop large-
scale distributed real-time and embedded (DRE) systems, such as air-traffic management, 
shipboard computing environments, and distributed sensor webs. These domains are often 
characterized as “open” since applications in these domains must contend not only with changing 
environmental conditions (such as changing power levels, operational nodes, or network status), 
but also evolving operational requirements and mission objectives [84].  

To adapt to changing environments and operational requirements, it may be necessary to change 
the deployment and configuration characteristics of these DRE systems at runtime. Examples of 
potential adaptations include deployment or teardown of individual component instances, chang-
ing connection configuration, or altering QoS properties in the target component runtime. As a 
result of stringent quality of service (QoS) requirements in these domains, it is important that any 
changes to DRE system deployment and configuration occur as quickly and predictably as 
possible.  That is, DRE systems expect short and bounded deployment latencies.  

Not only are timely and dependable runtime deployment and configuration changes essential in 
DRE systems, even initial application startup time can be an important metric. For example, in 
extremely energy-constrained systems, such as distributed sensor networks, a common power 
saving strategy may involve completely deactivating field hardware and periodically restarting it 
to take new measurements or activate actuators. In such environments, deployments must be fast 
and time-bounded.  

To support these requirements, the efficiency and QoS provided by the deployment infrastructure 
should be considered alongside the component middleware used to develop DRE systems. 
Standards, such as the Object Management Group (OMG) Deployment and Configuration 
(D&C) specification [85] for component-based applications, have emerged in recent years.

 

The 
OMG D&C specification provides comprehensive development, packaging, and deployment 
frameworks for a wide range of component middleware. Although originally developed for the 
CORBA Component Model (CCM), the OMG D&C specification is defined via a UML meta-
modeling that is applicable to many other component models. 
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In the OMG D&C specification, deployment instructions are delivered to the deployment 
infrastructure via a component deployment plan (CDP), which contains the complete set of 
deployment and configuration information for component instances and their associated 
connection information. During DRE system initialization, such information must be parsed, 
components deployed on the nodes, and the system activated in a timely and predictable manner. 
We refer to the timeliness of the deployment infrastructure as the “deployment latency,” which 
includes the time starting when a CDP is provided to the deployment infrastructure to the time at 
which all deployment instructions have been executed and the system activated.  

This section motivates and describes architectural enhancements we made to the OMG D&C 
specification to achieve predictable deployment latencies for large-scale DRE systems. Our 
solution is called the Locality-Enhanced Deployment and Configuration Engine (LE-DAnCE), 
which extends our earlier Deployment and Configuration Engine (DAnCE) [86]. We developed 
DAnCE with the sole aim of cleanly separating concerns defined by the OMG D&C 
specification and demonstrating its feasibility. After applying DAnCE to a range of 
representative DRE systems, however, we found the lack of appropriate optimizations and archi-
tectural limitations of the OMG D&C specification yielded performance bottlenecks that 
adversely impacted deployment latencies. Moreover, these performance bottlenecks stemmed 
from more than just limitations with the original DAnCE implementation, but involve inherent 
architectural limitations with the OMG D&C specification itself.  

12.2 Impediments to Predictable Deployment Latency 

We expose key sources of overhead that impact deployment latencies in DRE systems and 
pinpoint the architectural limitations in the D&C specification that exacerbate these overheads. 
The OMG D&C specification, whose architecture is shown in Figure 37 provides standard 
interchange formats for metadata used throughout the component application development 
lifecycle, as well as run time interfaces used for packaging and planning. Below we focus on the 
interfaces, metadata, and architecture used for runtime deployment and configuration. The major 
sources of latency overhead stem from multiple complexities in the OMG D&C standard, 
including the processing of deployment metadata from disk in XML format and an architectural 
ambiguity in the runtime infrastructure that encourages sub-optimal implementations. 
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Figure 37: OMG D&C Architectural Overview 

Challenge 1: Parsing Deployment Plans. Component application deployments for OMG D&C 
are described by a data structure that contains all the relevant configuration metadata for the 
component instances, their mappings to individual nodes, and any connection information 
required. This CDP is serialized on disk in a XML file whose structure is described by an XML 
Schema defined by the OMG D&C standard. This XML document format for CDP files presents 
significant advantages by providing a simple interchange format between modeling tools, is easy 
to generate and manipulate using widely available XML modules for popular programming 
languages, and enables simple modification and data mining by text processing tools, such as 
perl, grep, sed, and awk.  

Processing these CDP files during deployment and even runtime, however, can lead to 
substantial deployment latency costs [87]. This increased latency stems from the following 
sources: XML CDP file sizes grow substantially as the number of component instances and 
connections in the deployment increases, which causes significant I/O overhead to load the plan 
into memory and to validate the structure against the schema to ensure that it is well-formed.  

The XML document format cannot be directly used by the deployment infrastructure, so it must 
first be converted into the native OMG Interface Definition Language (IDL) format used by the 
runtime interfaces of the deployment framework. In many enterprise DRE systems, component 
deployments that number in the thousands are not uncommon, and component instances in these 
domains will exhibit a high degree of connectivity. Given the structure of these common DRE 
systems, both these factors contribute to large plans. While the above latency source is most 
immediately applicable to initial application deployment, it can also present a significant 
problem during potential redeployment activities at application runtime that involve significant 
changes to the application configuration. While CDP files that represent redeployment or 
reconfiguration instructions may not be as large as for the initial deployment, the responsiveness 
of the deployment infrastructure during these activities is even more important to ensure that the 
application continues to meet its stringent QoS and end-to-end deadlines during online 
modifications.  
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Challenge 2: Serialized Execution of Deployment Actions. The complexities presented earlier 
in this section involve the serial (non-parallel) execution of deployment tasks. The related 
sources of latency in DAnCE exist at both the global and node level. At the global level, this lack 
of parallelism results from the underlying CORBA transport used by DAnCE. The lack of 
parallelism at the local level, however, results from the lack of specificity in terms of the 
interface of the D&C implementation with the target component model that is contained in the 
D&C specification. The D&C deployment process enables global entities to divide the 
deployment process into a number of node-specific subtasks. Each subtask is dispatched to 
individual nodes using a single remote invocation, with any data produced by the nodes passed 
back to the global entities via “out” parameters that are part of the operation signature described 
in IDL. Due to the synchronous nature of the CORBA messaging protocol used to implement 
DAnCE, the conventional approach is to dispatch these sub-tasks serially to each node. This 
approach is simple to implement, in contrast to the complexity of using the CORBA 
asynchronous method invocation (AMI) mechanism [88].  

To minimize initial implementation complexity, we used synchronous invocation (admittedly 
shortsighted) in DAnCE. This global synchronicity did not cause problems for relatively small 
deployments (less than 100 components). However, as the number of both nodes and instances 
assigned to the nodes begin to scale up, the global/local serialization will impose a substantial 
cost in deployment latency.  

This serialization problem is not limited only to the global/local task dispatching, but also exists 
in the node-specific portion of the infrastructure. The D&C specification provides no guidance in 
terms of how the Node-Application should interface with the target component model (in this 
case, CCM), instead leaving such an interface as an implementation detail. Early versions of 
DAnCE directly instantiated the CCM containers and components directly in the address space 
of the Node Application. To alleviate the resulting tedious and error-prone deployment logic, we 
later separated the CCM container into a separate process. In DAnCE, the D&C architecture was 
implemented using three processes, as shown in Figure 38. 

 

Figure 38: Simplified DAnCE Architecture 

The Execution Manager and Node Manager processes instantiate their associated Application 
Manager and Application instances in their address space. When the Node Application installs 
the concrete component instances it spawns one, or more, separate component server processes 
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as needed. The component server processes use an interface derived from an older version of the 
CCM specification that allows the Node Application to individually instantiate containers and 
component instances. This approach is similar to that taken by CARDAMOM 
(cardamom.objectweb.org), which is another CCM implementation tailored for enterprise DRE 
systems, such as air-traffic management systems.  

While the DAnCE architecture shown in Figure 38 improved upon the original implementation 
that collocated all CCM entities in Node Application address space, it was still problematic with 
respect to parallelization. Rather than performing only some processing and delegating the 
remainder of the concrete deployment logic to the component server process, the DAnCE Node 
Application implementation instead integrates all logic necessary for installing, configuring, and 
connecting instances directly, as shown in Figure 39. 

 

Figure 39: DAnCE Node Application Implementation 

This tight integration made it hard to optimize the node-level installation process for the 
following reasons:  

 The amount of data shared by the generic deployment logic (the portion of the Node 
Application implementation that interprets the plan) and the specific deployment logic (the 
portion which has specific knowledge of how to manipulate components) made it hard to 
parallelize their installation since that data must be modified during installation.  

 Since groups of components installed to separate component servers can be considered 
separate deployment sub-tasks, these groupings could be also parallelized. 

12.3 Overcoming Deployment Latency Bottlenecks in Le-Dance 

12.3.1 Improving Runtime Plan Processing 

There are two approaches to resolving the challenge of XML:  

1. Optimize the XML to IDL processing capability. DAnCE uses a vocabulary-specific XML 
data binding [89] tool called the XML Schema Compiler (XSC). XSC reads D&C XML 
schemas and generates a C++-based interface to XML documents built atop the Document 
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Object Model (DOM) XML programming API. In general, DOM is a time/space-intensive 
approach since the entire document must first be processed to fully construct a tree-like 
representation of the document before the XML-to-IDL translation process can occur.  

An alternative is to use the Simple API for XML (SAX), which uses an event-based 
processing model to process XML files as they are read from disk. While a SAX-based 
parser would reduce the time/space spent building the in-memory representation of the XML 
document, the performance gains may be too small to invest the substantial development 
time required to re-factor the DAnCE configuration handlers, which serve as a bridge 
between the XSC-generated code and IDL. In particular, a SAX-based approach would still 
require a substantial amount of runtime text-based processing. Moreover, CDP files have 
substantial amounts of internal cross-referencing, which would require the entire document 
be processed before any actual XML-to-IDL conversion could occur.  

2. Pre-process the XML files for latency-critical deployments. This optimization approach 
(used by LE-DAnCE) is accomplished via a tool we developed that leverages the existing 
DOM-based XML-to-IDL conversion handlers in DAnCE to (1) convert the CDP into its 
runtime IDL representation and (2) serialize the result to disk using the Common Data 
Representation (CDR) binary format defined by the CORBA specification. This platform-
independent binary format used to store the CDP on disk is the same format used to transmit 
the plan over the network at runtime. The advantage of this approach is that it leverages the 
heavily optimized de-serialization handlers provided by the underlying CORBA 
implementation (TAO) to create an in-memory representation of the CDP data structure from 
the on-disk binary stream. 

12.3.2 Parallelizing Deployment Activity  

To support parallelized dispatch of deployment activity at the node level, we enhanced the OMG 
D&C standard by adding a Locality Manager to LE-DAnCE. The Locality-Manager unifies all 
three deployment roles, and functions as a replacement for the component server in Figure 38. 
An overview of LE-DAnCE’s Locality-Manager appears in [90].  

The LE-DAnCE node-level architecture (e.g.,Node Manager, Node Application Manager, and 
Node Application) now functions as a node-constrained version of the global portion of the 
OMG D&C architecture. Rather than having the Node Application directly causing the 
installation of concrete component instances, this responsibility is now entirely delegated to 
Locality Manager instances. The node-level infrastructure performs a second “split” of the plan it 
receives from the global level by grouping component instances into one or more component 
servers. The Node Application then spawns a number of Locality Manager processes and 
delegates these “process-constrained” (i.e., containing only components and connections apropos 
to a single process) plans to each process in parallel. 

Unlike the previous DAnCE Node Application implementation, the LE-DAnCE Locality 
Manager functions as a generic application server that maintains a strict separation of concerns 
between the general deployment logic required to analyze the plan and the specific deployment 
logic required to actually install and manage the lifecycle of concrete component middleware 
instances. This separation is achieved using entities called Instance Installation Handlers, which 
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provide a well-defined interface for managing the life-cycle of a component instance, including 
installation, removal, connection, disconnection, and activation. Installation Handlers are also 
used in the context of the Node Application to manage the life-cycle of Locality Manager 
processes.  

Figure 40 shows the startup process for a Locality Manager instance. During the start launch 
phase of deployment, an Installation Handler hosted in the Node Application spawns a Locality 
Manager process and handles the initial handshake to provide configuration information. The 
Node Application then instructs the Locality Manager to begin deployment by invoking 
preparePlan() and startLaunch(). During this process, the Locality Manager will examine the 
plan to determine what instance types must be installed (e.g., container, component, or home). 
After loading the appropriate Installation Handlers will delegate the actual installation process 
for these instances via the install_instance() method on the Installation Handler. 

 

Figure 40: Locality Manager Startup Sequence 

The new LE-DAnCE Locality Manager and Installation Handlers make it substantially easier to 
parallelize than in DAnCE. Parallelism in both the Locality Manager and Node Application is 
achieved using an entity called the Deployment Scheduler, which is shown in Figure 41. The 
Deployment Scheduler combines the Command pattern [91] and the Active Object pattern [92]. 
Individual deployment actions (e.g., instance installation, instance connection, etc.) are encased 
inside an Action object, along with any required metadata. Each individual deployment action is 
an invocation of a method on an Installation Handler, so these actions need not be re-written for 
each potential deployment target. Error handling and logging logic is also fully contained within 
individual actions, further simplifying the Locality-Manager.  

Individual actions (e.g., install a component or create a connection) are scheduled for execution 
by a configurable threadpool, which can provide user-selected single-threaded or multi-threaded 
behavior, depending on the requirements of the application. This thread pool could also be used 
to implement more sophisticated scheduling behavior. For example, it might be desirable to 
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implement a priority-based scheduling algorithm that dynamically reorders the installation of 
component instances based on metadata present in the plan.  

 

Figure 41: DAnCE Deployment Scheduler 

During deployment, the Locality Manager determines which actions to perform during each 
particular phase and creates one Action object for each instruction. These actions are then passed 
to the deployment scheduler for execution while the main thread of control waits for a 
completion signal from the Deployment Scheduler. Upon completion, the Locality-Manager 
reaps either return values or error codes from the completed actions and completes the 
deployment phase.  

To provide parallelism between Locality Manager instances on the same node the LE-DAnCE 
Deployment Scheduler is also used in the implementation of the Node Application, along with an 
Installation Handler for Locality Manager processes. Using the Deployment Scheduler at this 
level also helps to overcome a significant source of latency whilst conducting node-level 
deployments. Spawning Locality Manager instances can take a significant amount of time 
compared to the deployment time required for component instances, so parallelizing this process 
can achieve significant latency savings when application deployments have many Locality-
Manager processes per node. 

12.4 Concluding Remarks 

This section described the OMG Deployment and Configuration (D&C) specification for 
component-based applications and explored sources of deployment latency overhead that 
degraded the responsiveness of the Deployment And Configuration Engine (DAnCE),which is an 
open-source implementation of the D&C specification. We then explained how our Locality-
Enhanced Deployment and Configuration Engine (LE-DAnCE) enhanced DAnCE to alleviate 
key sources of deployment latency overhead associated with XML preprocessing and 
LocalityManager architecture. The effectiveness of the LE-DAnCE LocalityManager 
architecture was then empirically evaluated [87] by (1) deploying a number of high component-
density applications to demonstrate the performance of the toolchain as the number of 
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components grows and (2) measuring the predictability of these performance results by 
repeatedly deploying the same setup on a 1,000 component deployment.  

The following lessons were learned conducting this research: Split Plan process incurs 
significant deployment latency. The results showed that the plan preparation phase of 
deployment is a large source of deployment latency, due in large part to inefficiency in the LE-
DAnCE “split plan” algorithm [87]. To alleviate this inefficiency our future work will determine 
if this algorithm can further be optimized or investigate ways that the plan can be split before 
deployment to reduce runtime deployment latency.  

The startLaunch operation is a significant source of jitter. The start launch phase of deployment 
produces the largest amount of jitter in the LE-DAnCE deployment process. Prior experiments 
[93] conducted on DAnCE showed this jitter stemmed from the dynamic loading of component 
implementations at runtime and can be alleviated by directly compiling component 
implementations and plan metadata into the deployment infrastructure. While this approach 
reduces jitter and latency, it is also invasive into the D&C implementation, hard to maintain, and 
removes much of the flexibility from the D&C toolchain. Our future work is exploring more 
flexible ways to reduce this jitter via work that builds on these previous efforts.  

CIAO and LE-DAnCE are open-source software and all work described is available in the latest 
version which can be obtained from download.dre.vanderbilt.edu. 
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13. Conclusions 

13.1 Summary 

Our prior work in the Air Force’s Global Information Grid (GIG), Army’s Future Combat 
Systems (FCS) program, and the Navy’s DDG 1000 program activities motivated a challenging 
problem facing developers of large-scale and layered DoD software-intensive net-centric 
systems: how to discover, measure, and rectify structural, integration, and/or performance 
problems early in the system's lifecycle (e.g., in the architecture and design phases), as opposed 
to the final system integration phase, when mistakes are much harder and more costly to fix. We 
observed that the bulk of today’s software technologies and validation/verification techniques are 
designed to develop and analyze relatively small-scale systems, where the set of tasks that will 
run in the system and their requirements for system resources are known in advance. 
Unfortunately, these technologies are poorly suited for large-scale DoD systems, where it is not 
possible to know the entire set of application tasks that will run on the system, the loads they will 
impose on system resources in response to a dynamically changing environment, or the order in 
which the tasks will execute. Moreover, even in today’s smaller-scale DoD systems where load 
is known in advance, there is often little confidence that system quality of service (QoS) 
requirements will be met in the deployment phase due to the complexities of analyzing complex 
systems built atop commercial-off-the-shelf (COTS) hardware and software components. 

Net-centric DoD systems must provide QoS support to process the right data in the right place at 
the right time over a networked grid of computers. Some QoS properties required by these DoD 
systems include the low latency and jitter as expected in conventional real-time and embedded 
systems, and high throughput, scalability, and reliability as expected in conventional enterprise 
distributed systems. Achieving this combination of QoS capabilities in DoD systems is hard, 
particularly when the systems are developed using COTS hardware/software components. 

The three year project called “System Execution Modeling Technologies for Large-scale Net-
centric DoD Systems” conducted research to address these challenges, and resulted in practical 
artifacts as part of a tool suite called “GUTS: GEMS Utilization Test Suite.” The R&D we 
conducted sought solutions along three dimensions: 

 Design-time solutions – where we conducted R&D in model-based algorithms and 
technologies; 

 Deployment-time solutions – where we conducted R&D on a variety of deployment-
related optimization solutions, often based on heuristics;  

 Run-time solutions – where we conducted R&D on runtime architectures to support the 
design- and deployment-time decisions. 

During the course of the project, we focused primarily on emerging platforms and technologies 
of interest to DoD including cloud environments and mobile platforms, all the while focusing on 
validating and assuring QoS properties as well as other physical properties, such as energy and 
power consumed, and environmental issues. All the artifacts we have developed are available in 
open source. In particular, the following URLs summarize the availability of these tools: 
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 CoSMIC/CUTS SEM tools that are part of GUTS are available from 
http://www.dre.vanderbilt.edu/cosmic 

 GEMS is available from the Eclipse modeling project pages at 
http://www.eclipse.org/gmt/gems/ 

 ASCENT and related technologies are available from http://code.google.com/p/ascent-
design-studio/ 

 All middleware sources are available from http://www.dre.vanderbilt.edu/downloads 

 

13.2 Future Work 

Our work to date has made initial forays into the world of resource management and deployment 
optimizations for tactical cloud environments that will increasingly be essential to realize 
increasingly complex DoD systems and operations. With the increasing proliferation of mobile 
devices including smart phones, and significant challenges stemming from security issues, we 
believe there are ample opportunities to conduct additional R&D. In particular, we will leverage 
our new DURIP equipment award to set up a smart phone-based cloud environment, and seek 
solutions to emerging problems in this space.  

13.3 Representative Publications 

This project resulted in multiple publications. Below we list the relevant and major publications 
stemming from the effort that covers the entire range of our contributions. 

1. J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortez. “Automated 
Diagnosis of Product-line Configuration Errors in Feature Models,” In Proceedings of the 
Software Product Lines Conference (SPLC), Limerick, Ireland, Sept. 2008. 

2. J. White, D. Benavides, B. Dougherty, and D. Schmidt. “Automated Reasoning for Multi-
step Configuration Problems,” In Proceedings of the Software Product Lines Conference 
(SPLC), San Francisco, USA, Aug. 2009. 

3. J. White, B. Dougherty, and D. Schmidt. “Selecting highly optimal architectural feature 
sets with Filtered Cartesian Flattening,” The Journal of Systems & Software, 82(8):1268–
1284, 2009. 

4. J. White, B Dougherty, C. Thompson, and D. C. Schmidt. “ScatterD: Spatial Deployment 
Optimization with Hybrid Heuristic / Evolutionary Algorithms,” Proceedings of the 
Conference on Evolutionary Algorithms, 2010; Also to Appear in ACM Transactions on 
Autonomous and Adaptive Systems Special Issue on Spatial.  

5. A. Shah, K. Ann, A. Gokhale, and J. White, “Maximizing Service Uptime of 
Smartphone-based Distributed Real-time and Embedded Systems,” Proceedings of the 
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IEEE 14th IEEE International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 2011, Irvine, CA, USA, pp. 3—10.  

6. N. Roy, A. Dubey, and A. Gokhale, “Efficient Autoscaling in the Cloud Using Predictive 
Models for Workload Forecasting,” Proceedings of the 4th IEEE International 
Conference on Cloud Computing (CLOUD ’11), Washington, D.C, USA, July 4—9, 
2011, pp. 500—507. 

7. W. Otte, A. Gokhale, and D. C. Schmidt, “Predictable Deployment in Component-based 
Enterprise Distributed Real-time and Embedded Systems,” Proceedings of the ACM 
Component-based Software Engineering, Boulder, CO, June 2011, pp. 21—30. 

8. J. White, B. Dougherty, C. Thompson, and D. C. Schmidt, “ScatterD: Spatial 
Deployment Optimization with Hybrid Heuristic,” in Evolutionary Algorithms, 2010. 

9. J. White, B. Doughtery, and D. C. Schmidt, “Ascent: An algorithmic technique for 
designing hardware and software in tandem,” IEEE Transactions on Software 
Engineering, pp. 838–851, 2010. 

10. W. Otte, D. Schmidt, and A. Gokhale, “Towards an Adaptive Deployment and 
Configuration Framework for Component-based Distributed Systems,” in 9th Workshop 
on Adaptive and Reflective Middleware (ARM ’10), Begaluru, India, 2010. 
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Appendix A. List of Acronyms 
ACE  Adaptive Communication Environment

AMI Asynchronous Method Invocation  
AMP ASCENT Modeling Platform 
ANT Another Neat Tool  
API Application Programming Interface
ARMA AutoRegressive Moving Average

ASCENT Allocation baSed Configuration ExploratioN Technique  
ATLAS Automatically Tuned Linear Algebra Software 
BLITZ Bin packing LocatIon Technique for processor minimiZation  
BON2 Builder Object Network 

CBMG Customer Behavior Modeling Graphs  
CBML Component Behavior Modeling Language  
CCM CORBA Component Model  
CDP Component Deployment Plan  
CDR Common Data Representation 
CLP Constrained Linear Programming 
CONST Constraints Optimization System  
COTS Commercial Off The Shelf  
CoWorkEr Component Workload Emulator  
CSP Constraint Satisfaction Problem 
CUTS CoWorkEr Utilization Test Suite  
D&C Deployment and Configuration  
DAnCE Deployment and Configuration Engine  
DoD Department of Defense  
DOM Document Object Model 
DRE Distributed real-time embedded  
DSML Domain-Specific Modeling Languages  
EC2 Elastic Compute Cloud
EJB Enterprise Java Beans

EMF Eclipse Modeling Framework 
FCF Filtered Cartesian Flattening  
FCS Future Combat Systems  
FFD First Fit Decreasing  
GEMS Generic Eclipse Modeling System
GIG Global Information Grid

GME Generic Modeling Environment  
GMF Graphical Modeling Framework  
GUTS GEMS Utilization Test Suite  
IDL Interface Definition Language  
KP Knapsack Problem  
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LE-DAnCE Locality-Enhanced Deployment and Configuration Engine  
MCKP Multiple-Choice Knapsack Problem  
MDA Model Driven Architecture  
MDE Model-Driven Engineering 
MDKP Multi-Dimensional Knapsack Problem  
MMKP Multiple-choice Multi-dimensional Knapsack Problems 
MVA Mean Value Analysis  
NAOMI New Associative Object Model of Integration

NOMAD NetwOrk MinimizAtion Depolyment 
OCL Object Constraint Language  
OMG Object Management Group
ORB Object Request Broker
OS Operating System 
PICML Platform Independent Component Modeling Language

PIM Platform-Independent Model 
PLA Product-Line Architectures  
PSM Platform-Specific Models 
PSO Particle Swarm Optimization  
QA Quality Assurance 
QoS Quality of Service  
RTA Response Time Analysis

SAX Simple API for XML  
ScatterD Scatter Deployment Algorithm  
SCORCH Smart Cloud Optimization for Resource Configuration Handling 
SEM System Execution Modeling  
SISPI Software-Intensive Systems Productivity Initiative  
SLA Service Level Agreement 
SOA Service-Oriented Architecture 
SPRUCE Software PRoducibility Collaboration and Experimentation Environment  
TAO The ACE ORB 
UAV Unmanned Aerial Vehicle  
UML Unified Modeling Language
URL Uniform Resource Locator

WML Workload Modeling Language  
XSC XML Schema Compiler  
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